scholarly journals Global exponential stability of a class of impulsive recurrent neural networks with proportional delays via fixed point theory

2016 ◽  
Vol 353 (2) ◽  
pp. 561-575 ◽  
Author(s):  
Liqun Zhou ◽  
Yanyan Zhang
2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Tianxiang Yao ◽  
Xianghong Lai

This work addresses the stability study for stochastic cellular neural networks with time-varying delays. By utilizing the new research technique of the fixed point theory, we find some new and concise sufficient conditions ensuring the existence and uniqueness as well as mean-square global exponential stability of the solution. The presented algebraic stability criteria are easily checked and do not require the differentiability of delays. The paper is finally ended with an example to show the effectiveness of the obtained results.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Weiyi Hu ◽  
Kelin Li

In this paper, we investigate the global exponential stability and periodicity of nonautonomous cellular neural networks with reaction-diffusion, impulses, and time-varying delays. By establishing a new differential inequality for nonautonomous systems, using the properties of M-matrix and inequality techniques, some new sufficient conditions for the global exponential stability of the system are obtained. Moreover, sufficient conditions for the periodic solutions of the system are obtained by using the Poincare mapping and the fixed point theory. The validity and superiority of the main results are verified by numerical examples and simulations.


Sign in / Sign up

Export Citation Format

Share Document