Fault-tolerant control for T–S fuzzy systems with sensor faults: Application to a ship propulsion system

2018 ◽  
Vol 355 (12) ◽  
pp. 4854-4872 ◽  
Author(s):  
Liang Qiao ◽  
Ying Yang
Author(s):  
Riadh Hmidi ◽  
Ali Ben Brahim ◽  
Slim Dhahri ◽  
Fayçal Ben Hmida ◽  
Anis Sellami

This paper proposes fault-tolerant control design for uncertain nonlinear systems described under Takagi-Sugeno fuzzy systems with local nonlinear models that satisfy the Lipschitz condition. First, by transforming sensor faults as ‘pseudo-actuator’ faults, an adaptive sliding mode observer is designed in order to simultaneously estimate system states, actuator and sensor faults despite the presence of norm-bounded uncertainties. Second, an adaptive sliding mode controller is suggested to provide a solution to stabilize the closed-loop system, even in the event of simultaneous occurrence of faults in actuators and sensors. Next, the main objective of the fault-tolerant control strategy is to compensate for the effects of fault based on the feedback information. Therefore, using the LMI optimization method, sufficient conditions are developed with [Formula: see text] to calculate the gains of the observer and the controller. Then, particular attention is paid to the simultaneous maximization, by convex multi-objective optimization, of the Lipschitz nonlinear constant in Takagi-Sugeno fuzzy modelling and uncertainties attenuation level. The results of the simulation illustrate the effectiveness of our fault-tolerant control approach using a nonlinear inverted pendulum with a cart system.


2003 ◽  
Vol 11 (5) ◽  
pp. 483-492 ◽  
Author(s):  
Claudio Bonivento ◽  
Andrea Paoli ◽  
Lorenzo Marconi

1997 ◽  
Vol 30 (18) ◽  
pp. 1071-1079 ◽  
Author(s):  
Roozbeh Izadi-Zamanabadi ◽  
Mogens Blanke

Sign in / Sign up

Export Citation Format

Share Document