nonlinear models
Recently Published Documents


TOTAL DOCUMENTS

2339
(FIVE YEARS 542)

H-INDEX

71
(FIVE YEARS 8)

Revista CERES ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 55-61
Author(s):  
Maria Inês Diel ◽  
Alessandro Dal’Col Lúcio ◽  
Denise Schmidt ◽  
Francieli de Lima Tartaglia ◽  
André Luis Tischler ◽  
...  

Author(s):  
Tolgay Kara ◽  
Sawsan Abokoos

The current applications in electromechanical energy conversion demand highly accurate speed and position control. For this purpose, a better understanding of the motion characteristics and dynamic behavior of electromechanical systems including nonlinear effects is needed. In this paper, a suitable model of Permanent Magnet Direct Current (PMDC) motor rotating in two directions is developed for identification purposes. Model is parameterized and identified via simulation and using real experimental data. Linear and nonlinear models for the system are built for identification, and the effective nonlinearities in the system, which are Coulomb friction and dead zone, are integrated into the nonlinear model. A Weiner- Hammerstein nonlinear system description is used for identification of the model. MATLAB is selected as the investigating tool, and a simulation model is used to observe the error between the simulated and estimated outputs. Identification of the linear and nonlinear system models using experimental data is performed using the least squares (LS) and recursive least squares (RLS) methods. Performance of the model and identification method with the real time experiments are presented numerically and graphically, revealing the advantages of the proposed nonlinear identification approach.


2022 ◽  
Vol 15 (1) ◽  
pp. 105-127
Author(s):  
Jingyuan Li ◽  
Qinghe Zhang ◽  
Tongqing Chen

Abstract. A numerical model, ISWFoam, for simulating internal solitary waves (ISWs) in continuously stratified, incompressible, viscous fluids is developed based on a fully three-dimensional (3D) Navier–Stokes equation using the open-source code OpenFOAM®. This model combines the density transport equation with the Reynolds-averaged Navier–Stokes equation with the Coriolis force, and the model discrete equation adopts the finite-volume method. The k–ω SST turbulence model has also been modified according to the variable density field. ISWFoam provides two initial wave generation methods to generate an ISW in continuously stratified fluids, including solving the weakly nonlinear models of the extended Korteweg–de Vries (eKdV) equation and the fully nonlinear models of the Dubreil–Jacotin–Long (DJL) equation. Grid independence tests for ISWFoam are performed, and considering the accuracy and computing efficiency, the appropriate grid size of the ISW simulation is recommended to be 1/150th of the characteristic length and 1/25th of the ISW amplitude. Model verifications are conducted through comparisons between the simulated and experimental data for ISW propagation examples over a flat bottom section, including laboratory scale and actual ocean scale, a submerged triangular ridge, a Gaussian ridge, and slope. The laboratory test results, including the ISW profile, wave breaking location, ISW arrival time, and the spatial and temporal changes in the mixture region, are well reproduced by ISWFoam. The ISWFoam model with unstructured grids and local mesh refinement can effectively simulate the evolution of ISWs, the ISW breaking phenomenon, waveform inversion of ISWs, and the interaction between ISWs and complex topography.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 92
Author(s):  
Bo Pieter Johannes Andrée

The current paper develops a probabilistic theory of causation using measure-theoretical concepts and suggests practical routines for conducting causal inference. The theory is applicable to both linear and high-dimensional nonlinear models. An example is provided using random forest regressions and daily data on yield spreads. The application tests how uncertainty in short- and long-term inflation expectations interacts with spreads in the daily Bitcoin price. The results are contrasted with those obtained by standard linear Granger causality tests. It is shown that the suggested measure-theoretic approaches do not only lead to better predictive models, but also to more plausible parsimonious descriptions of possible causal flows. The paper concludes that researchers interested in causal analysis should be more aspirational in terms of developing predictive capabilities, even if the interest is in inference and not in prediction per se. The theory developed in the paper provides practitioners guidance for developing causal models using new machine learning methods that have, so far, remained relatively underutilized in this context.


2022 ◽  
pp. 107754632110573
Author(s):  
Yi-lin Zheng ◽  
Lu-yu Li

Based on a single degree of freedom system, the inerter principles of an inertial mass damper and clutch inerter damper are introduced. The motion equations of the systems are derived, and the rotational speed and damping are considered. In addition, a reducer is innovatively combined with clutch inerter damper to significantly improve the inertance. Accordingly, an innovative reducer clutch inerter damper is proposed. Shaking table experiments are carried out on the uncontrolled inertial mass damper, clutch inerter damper, and reducer clutch inerter damper structures under the inputs of harmonic and seismic waves. Simulation models of the four types of structures are developed, and the validity of the theoretical models is verified by a comparison between the simulation and experiment. Moreover, the nonlinear models of clutch inerter damper and reducer clutch inerter damper are discussed. Finally, according to the test results, the vibration reduction effects of the three inerters are analyzed, and the reasons why they are different from the ideal clutch inerter damper are also explained. The results show that clutch inerter damper, especially reducer clutch inerter damper, has a good vibration damping performance.


2022 ◽  
Vol 79 (4) ◽  
Author(s):  
Bárbara Pereira Christofaro Silva ◽  
Diego Tassinari ◽  
Marx Leandro Naves Silva ◽  
Bruno Montoani Silva ◽  
Nilton Curi ◽  
...  

2022 ◽  
Vol 52 (3) ◽  
Author(s):  
Anderson Chuquel Mello ◽  
Marcos Toebe ◽  
Rafael Rodrigues de Souza ◽  
João Antônio Paraginski ◽  
Junior Carvalho Somavilla ◽  
...  

ABSTRACT: Sunflower produces achenes and oil of good quality, besides serving for production of silage, forage and biodiesel. Growth modeling allows knowing the growth pattern of the crop and optimizing the management. The research characterized the growth of the Rhino sunflower cultivar using the Logistic and Gompertz models and to make considerations regarding management based on critical points. The data used come from three uniformity trials with the Rhino confectionery sunflower cultivar carried out in the experimental area of the Federal University of Santa Maria - Campus Frederico Westphalen in the 2019/2020 agricultural harvest. In the first, second and third trials 14, 12 and 10 weekly height evaluations were performed on 10 plants, respectively. The data were adjusted for the thermal time accumulated. The parameters were estimated by ordinary least square’s method using the Gauss-Newton algorithm. The fitting quality of the models to the data was measured by the adjusted coefficient of determination, Akaike information criterion, Bayesian information criterion, and through intrinsic and parametric nonlinearity. The inflection points (IP), maximum acceleration (MAP), maximum deceleration (MDP) and asymptotic deceleration (ADP) were determined. Statistical analyses were performed with Microsoft Office Excel® and R software. The models satisfactorily described the height growth curve of sunflower, providing parameters with practical interpretations. The Logistics model has the best fitting quality, being the most suitable for characterizing the growth curve. The estimated critical points provide important information for crop management. Weeds must be controlled until the MAP. Covered fertilizer applications must be carried out between the MAP and IP range. ADP is an indicator of maturity, after reaching this point, the plants can be harvested for the production of silage without loss of volume and quality.


2022 ◽  
pp. 303-321
Author(s):  
Anastasius S. Moumtzoglou

The pandemic represents an opportunity to reimagine future healthcare and rethink healthcare management unbound by preconceived notions based on the following three main drivers that emerged during the pandemic. These include transformed business models, new care delivery models disrupted by ubiquitous data and technology, intelligent spaces, and digitally-enabled hospitality. In this context, it is imperative to reexamine all facets of healthcare management, considering that applying linear models to healthcare management has improved our understanding of their system structure and function. However, such models often fall short of explaining experimental results or predicting future abnormalities in complex nonlinear systems. Nonlinear models may better explain how the individual components collectively act and interact to produce a dynamic system in constant flux. They also assist in filling in some of the results which linear models do not adequately explain. Finally, chaos theory might provide new insights into standard as well as abnormal behavior within systems.


Sign in / Sign up

Export Citation Format

Share Document