Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo

2004 ◽  
Vol 47 (5) ◽  
pp. 279-303 ◽  
Author(s):  
Emiliano Bruner
2018 ◽  
Vol 5 (8) ◽  
pp. 180993 ◽  
Author(s):  
Madlen Stange ◽  
Daniel Núñez-León ◽  
Marcelo R. Sánchez-Villagra ◽  
Per Jensen ◽  
Laura A. B. Wilson

The process of domestication has long fascinated evolutionary biologists, yielding insights into the rapidity with which selection can alter behaviour and morphology. Previous studies on dogs, cattle and pigeons have demonstrated that domesticated forms show greater magnitudes of morphological variation than their wild ancestors. Here, we quantify variation in skull morphology, modularity and integration in chickens and compare those to the wild fowl using three-dimensional geometric morphometrics and multivariate statistics. Similar to other domesticated species, chickens exhibit a greater magnitude of variation in shape compared with their ancestors. The most variable part of the chicken skull is the cranial vault, being formed by dermal and neural crest-derived bones, its form possibly related to brain shape variation in chickens, especially in crested breeds. Neural crest-derived portions of the skull exhibit a higher amount of variation. Further, we find that the chicken skull is strongly integrated, confirming previous studies in birds, in contrast to the presence of modularity and decreased integration in mammals.


Taxon ◽  
2010 ◽  
Vol 59 (3) ◽  
pp. 881-895 ◽  
Author(s):  
Frédéric M.B. Jacques ◽  
Zhekun Zhou

2020 ◽  
Vol 287 (1930) ◽  
pp. 20200807 ◽  
Author(s):  
G. Sansalone ◽  
K. Allen ◽  
J. A. Ledogar ◽  
S. Ledogar ◽  
D. R. Mitchell ◽  
...  

Large brains are a defining feature of primates, as is a clear allometric trend between body mass and brain size. However, important questions on the macroevolution of brain shape in primates remain unanswered. Here we address two: (i), does the relationship between the brain size and its shape follow allometric trends and (ii), is this relationship consistent over evolutionary time? We employ three-dimensional geometric morphometrics and phylogenetic comparative methods to answer these questions, based on a large sample representing 151 species and most primate families. We found two distinct trends regarding the relationship between brain shape and brain size. Hominoidea and Cercopithecinae showed significant evolutionary allometry, whereas no allometric trends were discernible for Strepsirrhini, Colobinae or Platyrrhini. Furthermore, we found that in the taxa characterized by significant allometry, brain shape evolution accelerated, whereas for taxa in which such allometry was absent, the evolution of brain shape decelerated. We conclude that although primates in general are typically described as large-brained, strong allometric effects on brain shape are largely confined to the order's representatives that display more complex behavioural repertoires.


2021 ◽  
Author(s):  
Chad Eliason ◽  
Jenna M McCullough ◽  
Michael J Andersen ◽  
Shannon J Hackett

2016 ◽  
Author(s):  
Joshua R. Robinson ◽  
◽  
John Rowan ◽  
Christopher J. Campisano ◽  
Jonathan G. Wynn ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document