cell shape
Recently Published Documents


TOTAL DOCUMENTS

2444
(FIVE YEARS 453)

H-INDEX

131
(FIVE YEARS 13)

2021 ◽  
Vol 23 (1) ◽  
pp. 227
Author(s):  
Velichka Strijkova-Kenderova ◽  
Svetla Todinova ◽  
Tonya Andreeva ◽  
Desislava Bogdanova ◽  
Ariana Langari ◽  
...  

Human red blood cells (RBCs) are unique cells with the remarkable ability to deform, which is crucial for their oxygen transport function, and which can be significantly altered under pathophysiological conditions. Here we performed ultrastructural analysis of RBCs as a peripheral cell model, looking for specific signatures of the neurodegenerative pathologies (NDDs)—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), utilizing atomic force (AFM) and conventional optical (OM) microscopy. We found significant differences in the morphology and stiffness of RBCs isolated from patients with the selected NDDs and those from healthy individuals. Neurodegenerative pathologies' RBCs are characterized by a reduced abundance of biconcave discoid shape, lower surface roughness and a higher Young’s modulus, compared to healthy cells. Although reduced, the biconcave is still the predominant shape in ALS and AD cells, while the morphology of PD is dominated by crenate cells. The features of RBCs underwent a marked aging-induced transformation, which followed different aging pathways for NDDs and normal healthy states. It was found that the diameter, height and volume of the different cell shape types have different values for NDDs and healthy cells. Common and specific morphological signatures of the NDDs were identified.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Daniela Trisciuoglio ◽  
Francesca Degrassi

Microtubules are tubulin polymers that constitute the structure of eukaryotic cells. They control different cell functions that are often deregulated in cancer, such as cell shape, cell motility and the intracellular movement of organelles. Here, we focus on the crucial role of tubulin modifications in determining different cancer characteristics, including metastatic cell migration and therapy resistance. We also discuss the influence of microtubule modifications on the autophagic process—the cellular degradation pathway that influences cancer growth. We discuss findings showing that inducing microtubule modifications can be used as a means to kill cancer cells by inhibiting autophagy.


Our Nature ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 1-9
Author(s):  
Niroj Paudel ◽  
Kweon Heo

The comparative leaf morphology and anatomy of ten species of family Calycanthaceae have been studied. Leaf anatomy is very comparable to each other in cell shape and their arrangement. Collected leaves were preserved in FAA and alcohol series were applied for LM and SEM. The layer of epidermis is two in Idiospermum and one in rest of other genera. The structure of vascular bundle is V-shape in Sinocalycanthus and Calycanthus whereas U-shape in Idiospermum and Chimonanthus. The density of trichome is higher in Calycanthus than other genera. The presence of trichome, stomata, epidermal layer, density of trichome and stomata, and leaf surface are represented the distinction among the genera. The adaxial surface of Idiospermum and Sinocalycanthus are smooth whereas of Calycanthus and Chimonanthus are rough. The crystals are present in Calycanthus, Sinocalycanthus and Chimonanthus whereas absent in Idiospermum. The shape of the vascular bundle, density of trichome, epidermal layer, and crystals play important role in the phylogenetic relationship of Calycanthaceae.  


2021 ◽  
Author(s):  
Wisath Sae-Lee ◽  
Caitlyn L. McCafferty ◽  
Eric J. Verbeke ◽  
Pierre C. Havugimana ◽  
Ophelia Papoulas ◽  
...  

SUMMARYRed blood cells (RBCs, erythrocytes) are the simplest primary human cells, lacking nuclei and major organelles, and instead employing about a thousand proteins to dynamically control cellular function and morphology in response to physiological cues. In this study, we defined a canonical RBC proteome and interactome using quantitative mass spectrometry and machine learning. Our data reveal an RBC interactome dominated by protein homeostasis, redox biology, cytoskeletal dynamics, and carbon metabolism. We validated protein complexes through electron microscopy and chemical crosslinking, and with these data, built 3D structural models of the ankyrin/Band 3/Band 4.2 complex that bridges the spectrin cytoskeleton to the RBC membrane. The model suggests spring-link compression of ankyrin may contribute to the characteristic RBC cell shape and flexibility. Taken together, our study provides an in-depth view of the global protein organization of human RBCs and serves as a comprehensive resource for future research.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benoit G Godard ◽  
Remi Dumollard ◽  
Carl-Philipp Heisenberg ◽  
Alex McDougall

Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).


Author(s):  
Steffen M. Recktenwald ◽  
Katharina Graessel ◽  
Felix M. Maurer ◽  
Thomas John ◽  
Stephan Gekle ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lavinia Gambelli ◽  
Rob Mesman ◽  
Wouter Versantvoort ◽  
Christoph A. Diebolder ◽  
Andreas Engel ◽  
...  

Methylomirabilis bacteria perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway, producing carbon dioxide and dinitrogen gas. These diderm bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria. We hypothesized that this S-layer is the determining factor for their polygonal cell shape. Therefore, we enriched the S-layer from M. lanthanidiphila cells and through LC-MS/MS identified a 31 kDa candidate S-layer protein, mela_00855, which had no homology to any other known protein. Antibodies were generated against a synthesized peptide derived from the mela_00855 protein sequence and used in immunogold localization to verify its identity and location. Both on thin sections of M. lanthanidiphila cells and in negative-stained enriched S-layer patches, the immunogold localization identified mela_00855 as the S-layer protein. Using electron cryo-tomography and sub-tomogram averaging of S-layer patches, we observed that the S-layer has a hexagonal symmetry. Cryo-tomography of whole cells showed that the S-layer and the outer membrane, but not the peptidoglycan layer and the cytoplasmic membrane, exhibited the polygonal shape. Moreover, the S-layer consisted of multiple rigid sheets that partially overlapped, most likely giving rise to the unique polygonal cell shape. These characteristics make the S-layer of M. lanthanidiphila a distinctive and intriguing case to study.


2021 ◽  
Vol 134 (23) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Alexander Hirschhäuser is first author on ‘ CK1α protects WAVE from degradation to regulate cell shape and motility in the immune response’, published in JCS. Alexander is a PhD student in the lab of Prof. Dr Sven Bogdan at the Philipps-University Marburg, Germany, investigating actin dynamics required for cell shape and cell migration of immune cells.


2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Hui-Chia Yu-Kemp ◽  
Rachel A. Szymanski ◽  
Daniel B. Cortes ◽  
Nicole C. Gadda ◽  
Madeline L. Lillich ◽  
...  

Epithelial cells assemble specialized actomyosin structures at E-Cadherin–based cell–cell junctions, and the force exerted drives cell shape change during morphogenesis. The mechanisms that build this supramolecular actomyosin structure remain unclear. We used ZO-knockdown MDCK cells, which assemble a robust, polarized, and highly organized actomyosin cytoskeleton at the zonula adherens, combining genetic and pharmacologic approaches with superresolution microscopy to define molecular machines required. To our surprise, inhibiting individual actin assembly pathways (Arp2/3, formins, or Ena/VASP) did not prevent or delay assembly of this polarized actomyosin structure. Instead, as junctions matured, micron-scale supramolecular myosin arrays assembled, with aligned stacks of myosin filaments adjacent to the apical membrane, overlying disorganized actin filaments. This suggested that myosin arrays might bundle actin at mature junctions. Consistent with this idea, inhibiting ROCK or myosin ATPase disrupted myosin localization/organization and prevented actin bundling and polarization. We obtained similar results in Caco-2 cells. These results suggest a novel role for myosin self-assembly, helping drive actin organization to facilitate cell shape change.


Sign in / Sign up

Export Citation Format

Share Document