scholarly journals Uniqueness of positive radial solutions for Dirichlet problems on annular domains

2008 ◽  
Vol 338 (1) ◽  
pp. 416-426 ◽  
Author(s):  
Jiangang Cheng ◽  
Luo Guang
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Zongming Guo ◽  
Fangshu Wan

<p style='text-indent:20px;'>Existence and uniqueness of positive radial solutions of some weighted fourth order elliptic Navier and Dirichlet problems in the unit ball <inline-formula><tex-math id="M1">\begin{document}$ B $\end{document}</tex-math></inline-formula> are studied. The weights can be singular at <inline-formula><tex-math id="M2">\begin{document}$ x = 0 \in B $\end{document}</tex-math></inline-formula>. Existence of positive radial solutions of the problems is obtained via variational methods in the weighted Sobolev spaces. To obtain the uniqueness results, we need to know exactly the asymptotic behavior of the solutions at the singular point <inline-formula><tex-math id="M3">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.</p>


1992 ◽  
Vol 35 (3) ◽  
pp. 405-418 ◽  
Author(s):  
Zongming Guo

We establish the existence of positive radially symmetric solutions of Δu+f(r,u,u′) = 0 in the domainR1<r<R0with a variety of Dirichlet and Neumann boundary conditions. The functionfis allowed to be singular when eitheru= 0 oru′ = 0. Our analysis is based on Leray-Schauder degree theory.


Author(s):  
Zhiqian He ◽  
Liangying Miao

Abstract In this paper, we study the number of classical positive radial solutions for Dirichlet problems of type (P) − d i v ∇ u 1 − | ∇ u | 2 = λ f ( u )   in B 1 , u = 0                     on ∂ B 1 , $$\left\{\begin{aligned}\hfill & -\mathrm{d}\mathrm{i}\mathrm{v}\left(\frac{\nabla u}{\sqrt{1-\vert \nabla u{\vert }^{2}}}\right)=\lambda f(u)\quad \text{in}\enspace {B}_{1},\hfill \\ \hfill & u=0\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \enspace \text{on}\enspace \partial {B}_{1},\enspace \hfill \end{aligned}\right.$$ where λ is a positive parameter, B 1 = { x ∈ R N : | x | < 1 } ${B}_{1}=\left\{x\in {\mathbb{R}}^{N}:\vert x\vert {< }1\right\}$ , f : [0, ∞) → [0, ∞) is a continuous function. Using the fixed point index in a cone, we prove the results on both uniqueness and multiplicity of positive radial solutions of (P).


Sign in / Sign up

Export Citation Format

Share Document