scholarly journals Leading coefficient problem for polynomial-like iterative equations

2009 ◽  
Vol 349 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Jingmin Chen ◽  
Weinian Zhang
2012 ◽  
Vol 9 (2) ◽  
pp. 65-70
Author(s):  
E.V. Karachurina ◽  
S.Yu. Lukashchuk

An inverse coefficient problem is considered for time-fractional anomalous diffusion equations with the Riemann-Liouville and Caputo fractional derivatives. A numerical algorithm is proposed for identification of anomalous diffusivity which is considered as a function of concentration. The algorithm is based on transformation of inverse coefficient problem to extremum problem for the residual functional. The steepest descent method is used for numerical solving of this extremum problem. Necessary expressions for calculating gradient of residual functional are presented. The efficiency of the proposed algorithm is illustrated by several test examples.


2020 ◽  
Vol 70 (3) ◽  
pp. 605-616
Author(s):  
Stanisława Kanas ◽  
Vali Soltani Masih ◽  
Ali Ebadian

AbstractWe consider a family of analytic and normalized functions that are related to the domains ℍ(s), with a right branch of a hyperbolas H(s) as a boundary. The hyperbola H(s) is given by the relation $\begin{array}{} \frac{1}{\rho}=\left( 2\cos\frac{\varphi}{s}\right)^s\quad (0 \lt s\le 1,\, |\varphi| \lt (\pi s)/2). \end{array}$ We mainly study a coefficient problem of the families of functions for which zf′/f or 1 + zf″/f′ map the unit disk onto a subset of ℍ(s) . We find coefficients bounds, solve Fekete-Szegö problem and estimate the Hankel determinant.


Sign in / Sign up

Export Citation Format

Share Document