scholarly journals Boundary smoothing properties of the Kawahara equation posed on the finite domain

2014 ◽  
Vol 417 (2) ◽  
pp. 519-536 ◽  
Author(s):  
Xiangqing Zhao ◽  
Bing-Yu Zhang
2012 ◽  
Vol 67 (12) ◽  
pp. 665-673 ◽  
Author(s):  
Kourosh Parand ◽  
Mehran Nikarya ◽  
Jamal Amani Rad ◽  
Fatemeh Baharifard

In this paper, a new numerical algorithm is introduced to solve the Blasius equation, which is a third-order nonlinear ordinary differential equation arising in the problem of two-dimensional steady state laminar viscous flow over a semi-infinite flat plate. The proposed approach is based on the first kind of Bessel functions collocation method. The first kind of Bessel function is an infinite series, defined on ℝ and is convergent for any x ∊ℝ. In this work, we solve the problem on semi-infinite domain without any domain truncation, variable transformation basis functions or transformation of the domain of the problem to a finite domain. This method reduces the solution of a nonlinear problem to the solution of a system of nonlinear algebraic equations. To illustrate the reliability of this method, we compare the numerical results of the present method with some well-known results in order to show the applicability and efficiency of our method.


1990 ◽  
Vol 57 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Z. Dursunkaya ◽  
S. Nair

The heat conduction and the moving solid-liquid interface in a finite region is studied numerically. A Fourier series expansion is used in both phases for spatial temperature distribution, and the differential equations are converted to an infinite number of ordinary differential equations in time. These equations are solved iteratively for the interface location as well as for the temperature distribution. The results are compared with existing solutions for low Stefan numbers. New results are presented for higher Stefan numbers for which solutions are unavailable.


Sign in / Sign up

Export Citation Format

Share Document