Random attractor and exponentially stability for the second order nonautonomous retarded lattice systems with multiplicative white noise

Author(s):  
Shengfan Zhou ◽  
Mengzhen Hua
2019 ◽  
Vol 19 (06) ◽  
pp. 1950044
Author(s):  
Haijuan Su ◽  
Shengfan Zhou ◽  
Luyao Wu

We studied the existence of a random exponential attractor in the weighted space of infinite sequences for second-order nonautonomous stochastic lattice system with linear multiplicative white noise. Firstly, we present some sufficient conditions for the existence of a random exponential attractor for a continuous cocycle defined on a weighted space of infinite sequences. Secondly, we transferred the second-order stochastic lattice system with multiplicative white noise into a random lattice system without noise through the Ornstein–Uhlenbeck process, whose solutions generate a continuous cocycle on a weighted space of infinite sequences. Thirdly, we estimated the bound and tail of solutions for the random system. Fourthly, we verified the Lipschitz continuity of the continuous cocycle and decomposed the difference between two solutions into a sum of two parts, and carefully estimated the bound of the norm of each part and the expectations of some random variables. Finally, we obtained the existence of a random exponential attractor for the considered system.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Anhui Gu ◽  
Zhaojuan Wang ◽  
Shengfan Zhou

We prove the existence of a compact random attractor for the random dynamical system generated by stochastic three-component reversible Gray-Scott system with a multiplicative white noise on infinite lattices.


2021 ◽  
pp. 2150050
Author(s):  
Yiju Chen ◽  
Chunxiao Guo ◽  
Xiaohu Wang

In this paper, we study the Wong–Zakai approximations of a class of second-order stochastic lattice systems with additive noise. We first prove the existence of tempered pullback attractors for lattice systems driven by an approximation of the white noise. Then, we establish the upper semicontinuity of random attractors for the approximate system as the size of approximation approaches zero.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Zhaojuan Wang ◽  
Shengfan Zhou

We study nonautonomous stochastic sine-Gordon lattice systems with random coupled coefficients and multiplicative white noise. We first consider the existence of random attractors in a weighted space for this system and then establish the upper semicontinuity of random attractors as the intensity of noise approaches zero.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Anhui Gu

The paper is devoted to proving the existence of a compact random attractor for the random dynamical system generated by stochastic three-component reversible Gray-Scott system with multiplicative white noise.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kush Kinra ◽  
Manil T. Mohan

<p style='text-indent:20px;'>This work deals with the asymptotic behavior of the two as well as three dimensional convective Brinkman-Forchheimer (CBF) equations in an <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional torus (<inline-formula><tex-math id="M2">\begin{document}$ n = 2, 3 $\end{document}</tex-math></inline-formula>):</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \frac{\partial\boldsymbol{u}}{\partial t}-\mu \Delta\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}+\alpha\boldsymbol{u}+\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}+\nabla p = \boldsymbol{f}, \ \nabla\cdot\boldsymbol{u} = 0, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M3">\begin{document}$ r\geq1 $\end{document}</tex-math></inline-formula>. We prove that the global attractor of the above system is singleton under small forcing intensity (<inline-formula><tex-math id="M4">\begin{document}$ r\geq 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M5">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ r\geq 3 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M7">\begin{document}$ n = 3 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ 2\beta\mu\geq 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M9">\begin{document}$ r = n = 3 $\end{document}</tex-math></inline-formula>). But if one perturbs the above system with an additive or multiplicative white noise, there is no sufficient evidence that the random attractor keeps the singleton structure. We obtain that the random attractor for 2D stochastic CBF equations forced by additive and multiplicative white noise converges towards the deterministic singleton attractor for all <inline-formula><tex-math id="M10">\begin{document}$ 1\leq r&lt;\infty $\end{document}</tex-math></inline-formula>, when the coefficient of random perturbation converges to zero (upper and lower semicontinuity). For the case of 3D stochastic CBF equations perturbed by additive and multiplicative white noise, we are able to establish that the random attractor converges towards the deterministic singleton attractor for <inline-formula><tex-math id="M11">\begin{document}$ 3\leq r&lt;\infty $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M12">\begin{document}$ 2\beta\mu\geq 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M13">\begin{document}$ r = 3 $\end{document}</tex-math></inline-formula>), when the coefficient of random perturbation converges to zero.</p>


Sign in / Sign up

Export Citation Format

Share Document