pullback attractors
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Honglv Ma ◽  
Jing Wang ◽  
Jun Xie

In this paper, we obtain the existence of pullback attractors for nonautonomous Kirchhoff equations with strong damping, which covers the case of possible generation of the stiffness coefficient. For this purpose, a necessary method via “the measure of noncompactness” is established.


Author(s):  
Yuming Qin ◽  
Bin Yang

In this paper, we prove the existence and regularity of pullback attractors for non-autonomous nonclassical diffusion equations with nonlocal diffusion when the nonlinear term satisfies critical exponential growth and the external force term $h \in L_{l o c}^{2}(\mathbb {R} ; H^{-1}(\Omega )).$ Under some appropriate assumptions, we establish the existence and uniqueness of the weak solution in the time-dependent space $\mathcal {H}_{t}(\Omega )$ and the existence and regularity of the pullback attractors.


Author(s):  
Luu Hoang Duc ◽  
Phan Thanh Hong

AbstractWe provide a unified analytic approach to study the asymptotic dynamics of Young differential equations, using the framework of random dynamical systems and random attractors. Our method helps to generalize recent results (Duc et al. in J Differ Equ 264:1119–1145, 2018, SIAM J Control Optim 57(4):3046–3071, 2019; Garrido-Atienza et al. in Int J Bifurc Chaos 20(9):2761–2782, 2010) on the existence of the global pullback attractors for the generated random dynamical systems. We also prove sufficient conditions for the attractor to be a singleton, thus the pathwise convergence is in both pullback and forward senses.


2021 ◽  
Vol 298 ◽  
pp. 30-67
Author(s):  
Gleiciane S. Aragão ◽  
Flank D.M. Bezerra ◽  
Rodiak N. Figueroa-López ◽  
Marcelo J.D. Nascimento

2021 ◽  
Vol 62 (7) ◽  
pp. 072704
Author(s):  
Xiaoya Song ◽  
Yangmin Xiong

2021 ◽  
pp. 2150050
Author(s):  
Yiju Chen ◽  
Chunxiao Guo ◽  
Xiaohu Wang

In this paper, we study the Wong–Zakai approximations of a class of second-order stochastic lattice systems with additive noise. We first prove the existence of tempered pullback attractors for lattice systems driven by an approximation of the white noise. Then, we establish the upper semicontinuity of random attractors for the approximate system as the size of approximation approaches zero.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yonghai Wang ◽  
Minhui Hu ◽  
Yuming Qin

AbstractIn this paper, we study the local uniformly upper semicontinuity of pullback attractors for a strongly damped wave equation. In particular, under some proper assumptions, we prove that the pullback attractor $\{A_{\varepsilon }(t)\}_{t\in \mathbb{R}}$ { A ε ( t ) } t ∈ R of Eq. (1.1) with $\varepsilon \in [0,1]$ ε ∈ [ 0 , 1 ] satisfies $\lim_{\varepsilon \to \varepsilon _{0}}\sup_{t\in [a,b]} \operatorname{dist}_{H_{0}^{1}\times L^{2}}(A_{\varepsilon }(t),A_{ \varepsilon _{0}}(t))=0$ lim ε → ε 0 sup t ∈ [ a , b ] dist H 0 1 × L 2 ( A ε ( t ) , A ε 0 ( t ) ) = 0 for any $[a,b]\subset \mathbb{R}$ [ a , b ] ⊂ R and $\varepsilon _{0}\in [0,1]$ ε 0 ∈ [ 0 , 1 ] .


2021 ◽  
Vol 65 (5) ◽  
pp. 77-82
Author(s):  
A. S. Ustiuzhaninova

Sign in / Sign up

Export Citation Format

Share Document