An improved dynamic cutting force model for end-milling process

2004 ◽  
Vol 148 (3) ◽  
pp. 317-327 ◽  
Author(s):  
Shih-Ming Wang ◽  
Chu-Hsiang Chiou ◽  
Yuan-Ming Cheng
Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


2011 ◽  
Vol 188 ◽  
pp. 404-409 ◽  
Author(s):  
Xue Yan ◽  
Hua Tao ◽  
D.H. Zhang ◽  
B.H. Wu

A developed method to predict the cutting forces in end milling of generalized corners is proposed in this paper. The cornering milling process is divided into a series of cutting segments with different cutting states. The mathematical model of the geometric relationship between cutter and the corner profile is established for each segment. Cutting forces is predicted by introducing the classical cutting force model. The computational results of cutting forces are in good agreement with experimental data.


2021 ◽  
Author(s):  
Haiyan Wang ◽  
Kexin Tao ◽  
Tian Jin

Abstract Milling forces play an important role in the milling process and are generally calculated by the mechanistic or numerical methods, reliable model of cutting force is very important for the simulation of milling process, which has big scientific significance to further improve machining quality. Ball helical milling technology is used to make holes based on the cutting principle of helical milling using ball end cutter, due to the influence of spherical surface machining characteristic, the modeling of cutting force in ball helical milling is difficult. Therefore, the main purpose of this paper is to first establish an analytical cutting force model in the ball helical milling process. Considering cutting characteristics in the axial feed, the kinematics of ball helical milling is first presented, then the chip thickness distribution in different directions along the cutting edges are predicted. Furthermore, based on the characteristics of helical milling technology and geometry shape of ball end mill and the classical mechanical cutting force model, through the study on the ball-end milling mechanics, a new relatively accurate theoretical cutting force model is established. At the same time, cutting force coefficients are identified through instantaneous force method according to the Ti-alloy experimental research result. Finally, higher simulation precision of cutting force model in ball helical milling process is received.


Sign in / Sign up

Export Citation Format

Share Document