Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio

2014 ◽  
Vol 28 (1) ◽  
pp. 13-21 ◽  
Author(s):  
S. Tangjitsitcharoen ◽  
P. Thesniyom ◽  
S. Ratanakuakangwan

2011 ◽  
Vol 121-126 ◽  
pp. 2059-2063 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Angsumalin Senjuntichai

In order to realize the intelligent machines, the practical model is proposed to predict the in-process surface roughness during the ball-end milling process by utilizing the cutting force ratio. The ratio of cutting force is proposed to be generalized and non-scaled to estimate the surface roughness regardless of the cutting conditions. The proposed in-process surface roughness model is developed based on the experimentally obtained data by employing the exponential function with five factors of the spindle speed, the feed rate, the tool diameter, the depth of cut, and the cutting force ratio. The prediction accuracy and the prediction interval of the in-process surface roughness model at 95% confident level are calculated and proposed to predict the distribution of individually predicted points in which the in-process predicted surface roughness will fall. All those parameters have their own characteristics to the arithmetic surface roughness and the surface roughness. It is proved by the cutting tests that the proposed and developed in-process surface roughness model can be used to predict the in-process surface roughness by utilizing the cutting force ratio with the highly acceptable prediction accuracy.



2015 ◽  
Vol 799-800 ◽  
pp. 312-318 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Thanathip Jatinandana ◽  
Angsumalin Senjuntichai

This research proposed an in-process tool wear prediction during the ball-end milling process by utilizing the cutting force ratio. The dimensionless cutting force ratio is proposed to cut off the effects of the work material and the combination of cutting conditions. The in-process tool wear prediction model is developed by employing the exponential function, which consists of the spindle speed, the feed rate, the depth of cut, the tool diameter, and the cutting force ratio. The experimentally obtained results showed that the cutting force ratio can be utilized to predict the tool wear of ball-end milling tool. The new cutting tests have been employed to verify the model and the results run satisfaction. It has been proved that the in-process tool wear prediction model can be used to predict the tool wear regardless of the cutting conditions with the highly acceptable prediction accuracy.



2011 ◽  
Vol 418-420 ◽  
pp. 1428-1434 ◽  
Author(s):  
Keerati Karunasawat ◽  
Somkiat Tangjitsitcharoen

The objective of this research is to develop the surface roughness and cutting force models by using the air blow cutting of the aluminum in the ball-end milling process. The air blow cutting proposed in order to reduce the use of the cutting fluid. The surface roughness and cuttting force models are proposed in the exponential forms which consist of the cutting speed, the feed rate, the depth of cut, the tool diameter, and the air blow pressure. The coefficients of the surface roughness and cutting force models are calculated by utilizing the multiple regression with the least squared method at 95% significant level. The effects of cutting parameters on the cutting force are investigated and measured to analyze the relation between the surface roughness and the cutting conditions. The experimentally obtained results showed that the cutting force has the same trend with the surface roughness. The surface plots are constructed to determine the optimum cutting condition referring to the minimum surface roughness.



2011 ◽  
Vol 291-294 ◽  
pp. 3013-3023 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Channarong Rungruang

In order to realize the environmental hazard, this paper presents the investigation of the machinability of ball-end milling process with the dry cutting, the wet cutting, and the mist cutting for aluminum. The relations of the surface roughness, the cutting force, and the cutting parameters are examined based on the experimental results by using the Response Surface Analysis with the Box-Behnken design. The in-process cutting force is monitored to analyze the relations of the surface roughness and the cutting parameters. The proper cutting condition can be determined easily referring to the minimum use of cutting fluid, and the minimum surface roughness and cutting force of the surface plot. The effectiveness of the obtained surface roughness and cutting force models have been proved by utilizing the analysis of variance at 95% confident level.



Author(s):  
Somkiat Tangjitsitcharoen ◽  
Prae Thesniyom ◽  
Suthas Ratanakuakangwan

This research proposed an advance in the prediction of the in-process surface roughness during the ball-end milling process by utilizing the wavelet transform to monitor and decompose the dynamic cutting forces. The chatter detection system has been adopted from the previous research of the author to avoid the chatter first, and hence, the dynamic cutting force ratio is introduced to predict the in-process surface roughness during the normal cutting by taking the ratio of the decomposed dynamic cutting force in X axis to that in Z axis. The Daubechies wavelet transform is employed in this research to analyze the in-process surface roughness. The experimentally obtained results showed that the surface roughness frequency occurred at the same level of the decomposed dynamic cutting forces although the cutting conditions are changed. It is understood that the in-process surface roughness can be predicted effectively under various cutting conditions referring to the proposed monitoring system.



Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.



Author(s):  
M. Kishanth ◽  
P. Rajkamal ◽  
D. Karthikeyan ◽  
K. Anand

In this paper CNC end milling process have been optimized in cutting force and surface roughness based on the three process parameters (i.e.) speed, feed rate and depth of cut. Since the end milling process is used for abrading the wear caused is very high, in order to reduce the wear caused by high cutting force and to decrease the surface roughness, the optimization is much needed for this process. Especially for materials like aluminium 7010, this kind of study is important for further improvement in machining process and also it will improve the stability of the machine.



2015 ◽  
Vol 799-800 ◽  
pp. 324-328
Author(s):  
Panrawee Yaisuk ◽  
Somkiat Tangjitsitcharoen

The surface roughness is monitored using the cutting force and the cutting temperature in the ball-end milling process by utilizing the response surface analysis with the Box-Behnken design. The optimum cutting condition is obtained referring to the minimum surface roughness, which is the spindle speed, the feed rate, the depth of cut, and the tool diameter. The models of cutting force ratio and the cutting temperature are proposed and developed based on the experimental results. It is understood that the surface roughness is improved with an increase in spindle speed, feed rate and depth of cut. The cutting temperature decreases with an increase in tool diameter. The model verification has showed that the experimentally obtained surface roughness model is reliable and accurate to estimate the surface roughness.



2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.



Sign in / Sign up

Export Citation Format

Share Document