scholarly journals Accelerating an iterative eigensolver for nuclear structure configuration interaction calculations on GPUs using OpenACC

2022 ◽  
pp. 101554
Author(s):  
Pieter Maris ◽  
Chao Yang ◽  
Dossay Oryspayev ◽  
Brandon Cook
2003 ◽  
Vol 68 (12) ◽  
pp. 2297-2308 ◽  
Author(s):  
Max Mühlhäuser ◽  
Melanie Schnell ◽  
Sigrid D. Peyerimhoff

Multireference configuration interaction calculations are carried out for ground and excited states of trichloromethanol to investigate two important photofragmentation processes relevant to atmospheric chemistry. For CCl3OH five low-lying excited states in the energy range between 6.1 and 7.1 eV are found to be highly repulsive for C-Cl elongation leading to Cl2COH (X2A') and Cl (X2P). Photodissociation along C-O cleavage resulting in Cl3C (X2A') and OH (X2Π) has to overcome a barrier of about 0.8 eV (13A'', 11A'') and 1.2 eV (13A') because the low-lying excited states 11A'', 13A' and 13A'' become repulsive only after elongating the C-O bond by about 0.3 Å.


1980 ◽  
Vol 58 (16) ◽  
pp. 1687-1690 ◽  
Author(s):  
Delano P. Chong

The excitation energies calculated by the HAM/3 procedure for ΠΠ* transitions in linear molecules can be internally inconsistent by as much as ± 0.6 eV. In the recent study by Åsbrink etal., the problem was avoided by adopting Recknagel's expressions and requiring the proper average ΠΠ* excitation energy. In this paper, we trace the small inconsistency back to its origin in HAM/3 theory and derive the analytical expression for the energy correction as well as Recknagel's formulas. Numerical examples studied include all seven linear molecules investigated by Åsbrink etal. The explicit expression for the correction enables us to perform meaningful configuration-interaction calculations on the excited states, as illustrated by the carbon suboxide molecule.


2012 ◽  
Vol 403 ◽  
pp. 012019 ◽  
Author(s):  
Pieter Maris ◽  
H Metin Aktulga ◽  
Mark A Caprio ◽  
Ümit V Çatalyürek ◽  
Esmond G Ng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document