pair potential
Recently Published Documents


TOTAL DOCUMENTS

718
(FIVE YEARS 65)

H-INDEX

52
(FIVE YEARS 3)

2022 ◽  
Vol 43 (2) ◽  
Author(s):  
Robert Hellmann

AbstractThe cross second virial coefficient $$B_{12}$$ B 12 for the interaction between water (H2O) and carbon monoxide (CO) was obtained with low uncertainty at temperatures from 200 K to 2000 K employing a new intermolecular potential energy surface (PES) for the H2O–CO system. This PES was fitted to interaction energies determined for about 58 000 H2O–CO configurations using high-level quantum-chemical ab initio methods up to coupled cluster with single, double, and perturbative triple excitations [CCSD(T)]. The cross second virial coefficient $$B_{12}$$ B 12 was extracted from the PES using a semiclassical approach. An accurate correlation of the calculated $$B_{12}$$ B 12 values was used to determine the dilute gas cross isothermal Joule–Thomson coefficient, $$\phi _{12}=B_{12}-T(\mathrm {d}B_{12}/\mathrm {d}T)$$ ϕ 12 = B 12 - T ( d B 12 / d T ) . The predicted values for both $$B_{12}$$ B 12 and $$\phi _{12}$$ ϕ 12 agree reasonably well with the few existing experimental data and older calculated values and should be the most accurate estimates of these quantities to date.


Author(s):  
Ali Aminian

This study aims to use Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) to describe the phase behavior of systems containing DESs and ILs. The DESs are based on Tetrabutylammonium chloride ([N4444]Cl) and Tetrabutylammonium bromide (TBAB) as hydrogen bond acceptors, and levulinic acid (LevA) and Diethylene Glycol (DEG) as hydrogen bond donors in the mole ratio of 1:2 and 1:4, respectively. The predicted phase equilibrium data from PC-SAFT has been compared to those from COSMO-RS and NRTL predictions. ILs studied in this work are low viscosity ether-functionalized pyridinium-based ILs [EnPy][NTf2] and [CmPy][NTf2], while 1-(2-methoxyethyl)-1-methylpyrrolidiniumbis(trifluoromethylsulfonyl)-amide) ([COC2mPYR][NTf2]) and 1-propyl-3-methylimidazolium bis{trifluoromethylsulfonyl}imide ([Pmim][NTf2]) were used for the study of the LLE systems with n-heptane + thiophene and n-hexane + ethylbenzene, respectively. In the last part, mixtures of linear alkanes and perfluoroalkanes have been studied to predict the phase behavior of perfluoroalkylalkanes with their linear alkane counterparts and comparisons have been made against SAFT-Mie pair potential.


2021 ◽  
Author(s):  
◽  
William Doonan

<p>We have studied the nature of unconventional superconductivity in the rare-earth nitride (REN) samarium nitride (SmN) for the purposes of providing a deeper understanding of the mechanisms that lead to such a phenomenon in an already extremely interesting material. An approximate low energy model has been introduced for SmN based on previous bandstructure calculation and recent experimental results. This consists of the non-dispersive 4f band associated with the samarium ion crossing through the dispersive 5d band associated with the nitrogen ion. Due to large spin polarisation in the bandstructure we need only consider the majority-spin 5d and 4f bands which lead to an essentially spinless two band system. Starting from this two band system, we apply the k dot p method to it in order to create an effective model for the system. This effective model for the material acts as the platform from which we study the possible triplet superconducting pairing. Basing our pairing on the electron-phonon interaction we have postulated the existence of triplet pairing in the 5d band, from which we have successfully characterised the pair potential in this system through the self-consistency equation. The pair potential Delta_d could be solved analytically in a special case where the Fermi level was equal to the 4f band. In this case we find that above a threshold effective coupling strength the superconducting state is established and analytically known. In contrast to this result for the more general case where the Fermi level is different to the 4f band we numerically recover a solution that was exponential in the effective coupling strength which is similar to the pairing as we expect from the single band case. Analytic solutions in this case were not able to be found, however, we know that from our numerical investigations there will exist a solution for any effective coupling strength, contrasting with the special case where the pairing amplitude can disappear below a certain threshold. In conjunction to these results we also examined the situation where the 5d and 4f bands have hybridised together in order to search for unique pairing that may be resistant to disorder. By keeping the triplet pairing only in the 5d band, this translates to hybrid pairing between electrons in the two hybridised bands. Results from the hybridised bands system show a new singlet-like pairing Delta_S which is even in k and singlet in the hybridised band indices. Preliminary numerical results suggest that this pairing indeed exists and occurs only near the avoided crossing of the hybridised bands. The existence of such a pairing, originating from triplet pairing, has exciting implications for the robustness of the superconductivity in the presence of disorder and/or impurities.</p>


2021 ◽  
Author(s):  
◽  
William Doonan

<p>We have studied the nature of unconventional superconductivity in the rare-earth nitride (REN) samarium nitride (SmN) for the purposes of providing a deeper understanding of the mechanisms that lead to such a phenomenon in an already extremely interesting material. An approximate low energy model has been introduced for SmN based on previous bandstructure calculation and recent experimental results. This consists of the non-dispersive 4f band associated with the samarium ion crossing through the dispersive 5d band associated with the nitrogen ion. Due to large spin polarisation in the bandstructure we need only consider the majority-spin 5d and 4f bands which lead to an essentially spinless two band system. Starting from this two band system, we apply the k dot p method to it in order to create an effective model for the system. This effective model for the material acts as the platform from which we study the possible triplet superconducting pairing. Basing our pairing on the electron-phonon interaction we have postulated the existence of triplet pairing in the 5d band, from which we have successfully characterised the pair potential in this system through the self-consistency equation. The pair potential Delta_d could be solved analytically in a special case where the Fermi level was equal to the 4f band. In this case we find that above a threshold effective coupling strength the superconducting state is established and analytically known. In contrast to this result for the more general case where the Fermi level is different to the 4f band we numerically recover a solution that was exponential in the effective coupling strength which is similar to the pairing as we expect from the single band case. Analytic solutions in this case were not able to be found, however, we know that from our numerical investigations there will exist a solution for any effective coupling strength, contrasting with the special case where the pairing amplitude can disappear below a certain threshold. In conjunction to these results we also examined the situation where the 5d and 4f bands have hybridised together in order to search for unique pairing that may be resistant to disorder. By keeping the triplet pairing only in the 5d band, this translates to hybrid pairing between electrons in the two hybridised bands. Results from the hybridised bands system show a new singlet-like pairing Delta_S which is even in k and singlet in the hybridised band indices. Preliminary numerical results suggest that this pairing indeed exists and occurs only near the avoided crossing of the hybridised bands. The existence of such a pairing, originating from triplet pairing, has exciting implications for the robustness of the superconductivity in the presence of disorder and/or impurities.</p>


Author(s):  
Xinwei Fan ◽  
Xiaoyu Chen ◽  
Huan Yang ◽  
Hai-Hu Wen

Abstract We investigate the behavior of vortex bound states in the quantum limit by self-consistently solving the Bogoliubov-de Gennes equation.\revision{We find that the energies of the vortex bound states deviates from the analytical result $E_\mu=\mu\Delta^2/E_F$ with the half-integer angular momentum $\mu$ at very low temperature. Specifically, the energy ratio for the first three orders is more close to $1:2:3$ instead of $1:3:5$ in the extreme quantum limit $T/T_c\ll\Delta/E_F$.} The local density of states reveals a Friedel-like behavior associated with that of the pair potential, which will be smoothed out by thermal effect above the quantum limit. Our studies show that the vortex bound states can exhibit very distinct features in different temperature regimes, which provides a comprehensive understanding and should stimulate more experimental efforts for verifications.


Author(s):  
Nicolai Bogoliubov ◽  
Mukhayo Rasulova ◽  
Tohir Akramov

A new method is proposed to obtain Gross–Pitaevskii equation by the chain of Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) quantum kinetic equations. In that sense, we investigate the dynamics of a quantum system including infinite number of identical particles which interact via a (special) pair potential on the form of Dirac delta-function.


2021 ◽  
Author(s):  
Yasser MOHSENI BEHBAHANI ◽  
Élodie LAINE ◽  
Alessandra CARBONE

Proteins ensure their biological functions by interacting with each other, and with other molecules. Determining the relative position and orientation of protein partners in a complex remains challenging. Here, we address the problem of ranking candidate complex conformations toward identifying near-native conformations. We propose a deep learning approach relying on a local representation of the protein interface with an explicit account of its geometry. We show that the method is able to recognise certain pattern distributions in specific locations of the interface. We compare and combine it with a physics-based scoring function and a statistical pair potential.


2021 ◽  
Vol 155 (14) ◽  
pp. 144902
Author(s):  
Michael N. Martinez ◽  
Alex G. Smith ◽  
Linsey M. Nowack ◽  
Binhua Lin ◽  
Stuart A. Rice

Author(s):  
Peter J. Forrester

The eigenvalue probability density function (PDF) for the Gaussian unitary ensemble has a well-known analogy with the Boltzmann factor for a classical log-gas with pair potential [Formula: see text], confined by a one-body harmonic potential. A generalization is to replace the pair potential by [Formula: see text]. The resulting PDF first appeared in the statistical physics literature in relation to non-intersecting Brownian walkers, equally spaced at time [Formula: see text], and subsequently in the study of quantum many-body systems of the Calogero–Sutherland type, and also in Chern–Simons field theory. It is an example of a determinantal point process with correlation kernel based on the Stieltjes–Wigert polynomials. We take up the problem of determining the moments of this ensemble, and find an exact expression in terms of a particular little [Formula: see text]-Jacobi polynomial. From their large [Formula: see text] form, the global density can be computed. Previous work has evaluated the edge scaling limit of the correlation kernel in terms of the Ramanujan ([Formula: see text]-Airy) function. We show how in a particular [Formula: see text] scaling limit, this reduces to the Airy kernel.


Sign in / Sign up

Export Citation Format

Share Document