Effect of gas diffusion layer compression on PEM fuel cell performance

2006 ◽  
Vol 159 (2) ◽  
pp. 922-927 ◽  
Author(s):  
Jiabin Ge ◽  
Andrew Higier ◽  
Hongtan Liu
2019 ◽  
Vol 44 (41) ◽  
pp. 23406-23415 ◽  
Author(s):  
P. Irmscher ◽  
D. Qui ◽  
H. Janßen ◽  
W. Lehnert ◽  
D. Stolten

Author(s):  
Yutaka Tabe ◽  
Daisuke Yoshida ◽  
Kazushige Kikuta ◽  
Takemi Chikahisa ◽  
Masaya Kozakai

This paper investigated the effects of gas and liquid water flow on the performance of a polymer electrolyte membrane (PEM) fuel cell using cells to allow direct observation of the phenomena in the cell and measurements of the local current density and the local pressure loss. The experimental results to compare the separator type indicated the effect of cross-over flow in the gas diffusion layer (GDL) under the lands of serpentine separators on cell performance and the potential of straight channel separator to achieve a relatively-uniform current density distribution. To evaluate the cross-over flow under the land of serpentine separators, a simple circuit model of the gas flow was developed. This analysis showed that slight variations in oxygen concentration caused by the cross-over flow under the land affect the local and overall current density distributions. It was also shown that the establishment of gas paths in the deep layer of GDL by the channels filled with condensed water is effective for stable operation at low flow rates of air in the straight channels.


2014 ◽  
Vol 39 (36) ◽  
pp. 21177-21184 ◽  
Author(s):  
Sheng-Yu Fang ◽  
Lay Gaik Teoh ◽  
Rong-Hsin Huang ◽  
Kan-Lin Hsueh ◽  
Ko-Ho Yang ◽  
...  

2005 ◽  
Vol 3 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Qingyun Liu ◽  
Junxiao Wu

A multi-resolution simulation method was developed for the polymer electrolyte membrane (PEM) fuel cell simulation: a full 3D model was employed for the membrane and diffusion layer; a 1D+2D model was applied to the catalyst layer, that is, at each location of the fuel cell plate, the governing equations were integrated only in the direction perpendicular to the fuel cell plate; and a quasi-1D model with high numerical efficiency and reasonable accuracy was employed for the flow channels. The simulation accuracy was assessed in terms of the fuel cell polarization curves and membrane Ohmic overpotential. Overall, good agreements between the simulated results and the experimental data were obtained. However, at large current densities, with high relative humidity reactant inputs, the simulation under-predicted the fuel cell performance due to the single-phase assumption; the simulation slightly over-predicted the fuel cell performance for a dry cathode input, possibly due to the nonlinearity of the membrane properties in dehydration case. Further, a parameter study was performed under both fully humidified and relatively dry conditions for the parameters related to the cathode catalyst layer and the gas diffusion layer (GDL). It is found that the effects of liquid water in both the GDL and catalyst layer on the cell performance, and the accurate identification of the cathode catalyst layer parameters such as the cathodic transfer coefficient should be focused for future studies in order to further improve the model accuracy.


Sign in / Sign up

Export Citation Format

Share Document