gas diffusion
Recently Published Documents


TOTAL DOCUMENTS

4501
(FIVE YEARS 1117)

H-INDEX

98
(FIVE YEARS 16)

2022 ◽  
Vol 522 ◽  
pp. 230998
Author(s):  
Yuming Wu ◽  
Sahil Garg ◽  
Mengran Li ◽  
Mohamed Nazmi Idros ◽  
Zhiheng Li ◽  
...  

2022 ◽  
Author(s):  
Ying Kong ◽  
Huifang Hu ◽  
Menglong Liu ◽  
Yuhui Hou ◽  
Viliam Kolivoska ◽  
...  

The most promising strategy to up-scale the electrochemical CO2 reduction reaction (ec-CO2RR) is based on the use of gas diffusion electrodes (GDEs) that allow current densities close to the range of 1 A/cm2 to be reached. At such high current densities, however, the flooding of the GDE cathode is often observed in CO2 electrolysers. Flooding hinders the access of CO2 to the catalyst, and by thus leaving space for (unwanted) hydrogen evolution, it usually leads to a decrease of the observable Faradaic efficiency of CO2 reduction products. To avoid flooding as much as possible has thus become one of the most important aims of to-date ec-CO2RR engineering, and robust analytical methods that can quantitatively assess flooding are now in demand. As flooding is very closely related to the formation of carbonate salts within the GDE structure, in this paper we use alkali (in particular, potassium) carbonates as a tracer of flooding. We present a novel analytical approach —based on the combination of cross-sectional energy-dispersive X-ray (EDX) mapping and inductively coupled plasma mass spectrometry (ICP--MS) analysis— that can not only visualise, but can also quantitatively describe the electrolysis time dependent flooding in GDEs, leading to a better understanding of electrolyser malfunctions.


Author(s):  
Nicholas Schwartz ◽  
Jason Harrington ◽  
Kirk J Ziegler ◽  
Philip Cox

Abstract The direct electrochemically driven separation of CO2 from a humidified N2, O2, and CO2 gas mixture was conducted using an asymmetric membrane electrode assembly (MEA). The MEA was fabricated using a screen-printed ionomer bound Pt cathode, an anion exchange membrane (AEM), and ionomer bound IrO2 anode. Electrocatalyst materials were physically and chemically characterized prior to inclusion within the electrode. Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) measurements using a rotating disk electrode (RDE) were used to quantify the catalytic activity and determine the effects of the catalyst-to-ionomer ratio. Catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface analysis, and (dynamic light scattering) DLS to evaluate catalyst structure, active surface area, and determine the particle size and bulk particle size distribution (PSD). The electrocatalyst layer of the electrodes were fabricated by screen printing a uniformly dispersed mixture of catalyst, dissolved anionic ionomer, and a solvent system onto an electrode supporting gas diffusion layer (GDL). Pt IrO2 MEAs were fabricated and current-voltage relationships were determined using constant-current measurements over a range of applied current densities and flow rates. Baseline reaction kinetics for CO2 separation were established with a standard set of Pt-IrO2 MEAs.


2022 ◽  
pp. 2100160
Author(s):  
Matthias Heßelmann ◽  
Berinike Clara Bräsel ◽  
Robert Gregor Keller ◽  
Matthias Wessling

Author(s):  
Boris Faybishenko ◽  
Yifeng Wang ◽  
Jon Harrington ◽  
Elena Tamayo-Mas ◽  
Jens Birkholzer ◽  
...  

AbstractUnderstanding gas migration in compacted clay materials, e.g., bentonite and claystone, is important for the design and performance assessment of an engineered barrier system of a radioactive waste repository system, as well as many practical applications. Existing field and laboratory data on gas migration processes in low-permeability clay materials demonstrate the complexity of flow and transport processes, including various types of instabilities, caused by nonlinear dynamics of coupled processes of liquid–gas exchange, dilation, fracturing, fracture healing, etc., which cannot be described by classical models of fluid dynamics in porous media. We here show that the complexity of gas migration processes can be explained using a phenomenological concept of nonlinear dynamics and deterministic chaos theory. To do so, we analyzed gas pressure and gas influx (i.e., input) and outflux (i.e., output), recorded during the gas injection experiment in the compact Mx80-D bentonite sample, and calculated a set of the diagnostic parameters of nonlinear dynamics and chaos, such a global embedding dimension, a correlation dimension, an information dimension, and a spectrum of Lyapunov exponents, as well as plotted 2D and 3D pseudo-phase-space strange attractors, based on the univariate influx and outflux time series data. These results indicate the presence of phenomena of low-dimensional deterministic chaotic behavior of gas migration in bentonite. In particular, during the onset of gas influx in the bentonite core, before the breakthrough, the development of gas flow pathways is characterized by the process of chaotic gas diffusion. After the breakthrough, with inlet-to-outlet movement of gas, the prevailing process is chaotic advection. During the final phase of the experiment, with no influx to the sample, the relaxation pattern of gas outflux is resumed back to a process of chaotic diffusion. The types of data analysis and a proposed phenomenological model can be used to establish the basic principles of experimental data-gathering, modeling predictions, and a research design.


Sign in / Sign up

Export Citation Format

Share Document