scholarly journals Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins

2012 ◽  
Vol 1 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Fengming Wang ◽  
Jingzhou Zhang ◽  
Suofang Wang
2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Lu Zheng ◽  
Yonghui Xie ◽  
Di Zhang ◽  
Haoning Shi

Passive flow control and heat transfer enhancement technique has become an attractive method for device internal cooling with low resistance penalty. In the present paper, the flow and heat transfer characteristics in the small scale rectangular channel with different groove–protrusions are investigated numerically. Furthermore, the combination effect with ribs is studied. The numerical results show that on the groove side, the flow separation mainly occurs at the leading edge, and the reattachment mainly occurs at the trailing edge in accordance with the local Nusselt number distribution. On the protrusion side, the separation mainly occurs at the protrusion back porch and enhances the heat transfer at the leading edge of the downstream adjacent groove. The rectangle case provides the highest dimensionless heat transfer enhancement coefficient Nu/Nu0, dimensionless resistance coefficient f/f0, and thermal performance (TP) with the highest sensitivity of Re. When ribs are employed, the separation bubble sizes prominently decrease, especially inside the second and third grooves. The Nu/Nu0 values significantly increase when ribs are arranged, and the one-row case provides the highest heat transfer enhancement by ribs. Besides, the two-row case provides the highest Nu/Nu0 value without ribs, and the three-row case shows the lowest Nu/Nu0 value whether ribs are arranged or not.


Author(s):  
Gaoliang Liao ◽  
Xinjun Wang ◽  
Xiaowei Bai ◽  
Ding Zhu ◽  
Jinling Yao

By using the CFX software, the three-dimensional flow and heat transfer characteristics in the cooling duct with pin-fin in the blade trailing edge were numerically simulated. The effects of pin-fin arrangements, Reynolds number, steam superheat degrees, streamwise pin density and convergence angle of the wedge duct on the flow and heat transfer characteristics were analysed. The results show that the Nusselt number on the endwall and pin-fin surfaces as well as the pin-fin row averaged Nusselt number increase with the increasing of Reynolds number, while it decreased with the with the increasing of X/D. The pressure drop increases with the increasing of Reynolds number while decreases with the increasing of X/D in the wedge duct. The degree of superheat has little effect on the pressure loss in the wedge duct. A comprehensive analysis and comparison show that the highest thermal performance is reached in the wedge duct when the value of X/D is 1.5.


Sign in / Sign up

Export Citation Format

Share Document