scholarly journals Solving parametric systems of polynomial equations over the reals through Hermite matrices

Author(s):  
Huu Phuoc Le ◽  
Mohab Safey El Din
2014 ◽  
Vol 13 (06) ◽  
pp. 1450013 ◽  
Author(s):  
Francis N. Castro ◽  
Ivelisse M. Rubio

We present an elementary method to compute the exact p-divisibility of exponential sums of systems of polynomial equations over the prime field. Our results extend results by Carlitz and provide concrete and simple conditions to construct families of polynomial equations that are solvable over the prime field.


2008 ◽  
Vol 54 (5) ◽  
pp. 2303-2316 ◽  
Author(s):  
Randall Dougherty ◽  
Chris Freiling ◽  
Kenneth Zeger

Author(s):  
I. Nikitin

Given a bivariate system of polynomial equations with fixed support sets [Formula: see text] it is natural to ask which multiplicities its solutions can have. We prove that there exists a system with a solution of multiplicity [Formula: see text] for all [Formula: see text] in the range [Formula: see text], where [Formula: see text] is the set of all integral vectors that shift B to a subset of [Formula: see text]. As an application, we classify all pairs [Formula: see text] such that the system supported at [Formula: see text] does not have a solution of multiplicity higher than [Formula: see text].


2019 ◽  
Vol 155 (2) ◽  
pp. 229-245 ◽  
Author(s):  
A. Esterov

We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.


Sign in / Sign up

Export Citation Format

Share Document