polynomial equations
Recently Published Documents


TOTAL DOCUMENTS

679
(FIVE YEARS 105)

H-INDEX

33
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 447
Author(s):  
Hsuan-Yu Chen ◽  
Chiachung Chen

A calibration curve is used to express the relationship between the response of the measuring technique and the standard concentration of the target analyst. The calibration equation verifies the response of a chemical instrument to the known properties of materials and is established using regression analysis. An adequate calibration equation ensures the performance of these instruments. Most studies use linear and polynomial equations. This study uses data sets from previous studies. Four types of calibration equations are proposed: linear, higher-order polynomial, exponential rise to maximum and power equations. A constant variance test was performed to assess the suitability of calibration equations for this dataset. Suspected outliers in the data sets are verified. The standard error of the estimate errors, s, was used as criteria to determine the fitting performance. The Prediction Sum of Squares (PRESS) statistic is used to compare the prediction ability. Residual plots are used as quantitative criteria. Suspected outliers in the data sets are checked. The results of this study show that linear and higher order polynomial equations do not allow accurate calibration equations for many data sets. Nonlinear equations are suited to most of the data sets. Different forms of calibration equations are proposed. The logarithmic transformation of the response is used to stabilize non-constant variance in the response data. When outliers are removed, this calibration equation’s fit and prediction ability is significantly increased. The adequate calibration equations with the data sets obtained with the same equipment and laboratory indicated that the adequate calibration equations differed. No universe calibration equation could be found for these data sets. The method for this study can be used for other chemical instruments to establish an adequate calibration equation and ensure the best performance.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
A. Esterov ◽  
L. Lang

AbstractWe introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $$f(x) = c_0 + c_1 x^{d_1} + \cdots + c_k x^{d_k}$$ f ( x ) = c 0 + c 1 x d 1 + ⋯ + c k x d k by varying its coefficients. If the GCD of the exponents is d, then the polynomial admits the change of variable $$y=x^d$$ y = x d , and its roots split into necklaces of length d. At best we can expect to permute these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric group over $$d_k/d$$ d k / d elements and $${\mathbb {Z}}/d{\mathbb {Z}}$$ Z / d Z . We study the multidimensional generalization of this equality: the Galois group of a general system of polynomial equations equals the expected wreath product for a large class of systems, but in general this expected equality fails, making the problem of describing such Galois groups unexpectedly rich.


2021 ◽  
Author(s):  
Mohammed El Amine MONIR

Abstract The real problematic with algebraic polynomial equations is how to exactly solve any sixth and fifth degree polynomial equations. In this study, we give a new absolute method that presents a new decomposition to exactly solve a sixth degree polynomial equation, while the corresponding fifth degree equation can be easily transformed into a sixth degree equation of this kind (sixth degree equation solvable by this method), then the sextic equation (sixth degree equation) obtained will be solved by applying the principles of this method; moreover, the solutions of the quintic equation (fifth degree equation) will be easily deduced.


Author(s):  
Dr. Roopa K M ◽  
◽  
Venkatesha P ◽  

The aim of this article is to present a brief review and a numerical comparison of iterative methods applied to solve the polynomial equations with real coefficients. In this paper, four numerical methods are compared, namely: Horner’s method, Synthetic division with Chebyshev method (Proposed Method), Synthetic division with Modified Newton Raphson method and Birge-Vieta method which will helpful to the readers to understand the importance and usefulness of these methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mudassir Shams ◽  
Naila Rafiq ◽  
Nasreen Kausar ◽  
Shams Forruque Ahmed ◽  
Nazir Ahmad Mir ◽  
...  

A new inverse family of the iterative method is interrogated in the present article for simultaneously estimating all distinct and multiple roots of nonlinear polynomial equations. Convergence analysis proves that the order of convergence of the newly constructed family of methods is two. The computer algebra systems CAS-Mathematica is used to determine the lower bound of convergence order, which justifies the local convergence of the newly developed method. Some nonlinear models from physics, chemistry, and engineering sciences are considered to demonstrate the performance and efficiency of the newly constructed family of inverse simultaneous methods in comparison to classical methods in the literature. The computational time in seconds and residual error graph of the inverse simultaneous methods are also presented to elaborate their convergence behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Naila Rafiq ◽  
Mudassir Shams ◽  
Nazir Ahmad Mir ◽  
Yaé Ulrich Gaba

A highly efficient two-step simultaneous iterative computer method is established here for solving polynomial equations. A suitable special type of correction helps us to achieve a very high computational efficiency as compared to the existing methods so far in the literature. Analysis of simultaneous scheme proves that its convergence order is 14. Residual graphs are also provided to demonstrate the efficiency and performance of the newly constructed simultaneous computer method in comparison with the methods given in the literature. In the end, some engineering problems and some higher degree complex polynomials are solved numerically to validate its numerical performance.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3299
Author(s):  
Dostonjon Barotov ◽  
Aleksey Osipov ◽  
Sergey Korchagin ◽  
Ekaterina Pleshakova ◽  
Dilshod Muzafarov ◽  
...  

: In recent years, various methods and directions for solving a system of Boolean algebraic equations have been invented, and now they are being very actively investigated. One of these directions is the method of transforming a system of Boolean algebraic equations, given over a ring of Boolean polynomials, into systems of equations over a field of real numbers, and various optimization methods can be applied to these systems. In this paper, we propose a new transformation method for Solving Systems of Boolean Algebraic Equations (SBAE). The essence of the proposed method is that firstly, SBAE written with logical operations are transformed (approximated) in a system of harmonic-polynomial equations in the unit n-dimensional cube Kn with the usual operations of addition and multiplication of numbers. Secondly, a transformed (approximated) system in Kn is solved by using the optimization method. We substantiated the correctness and the right to exist of the proposed method with reliable evidence. Based on this work, plans for further research to improve the proposed method are outlined.


Author(s):  
Sergei Kalmykov ◽  
Béla Nagy

AbstractThe famous Jones–Ruscheweyh theorem states that n distinct points on the unit circle can be mapped to n arbitrary points on the unit circle by a Blaschke product of degree at most $$n-1$$ n - 1 . In this paper, we provide a new proof using real algebraic techniques. First, the interpolation conditions are rewritten into complex equations. These complex equations are transformed into a system of polynomial equations with real coefficients. This step leads to a “geometric representation” of Blaschke products. Then another set of transformations is applied to reveal some structure of the equations. Finally, the following two fundamental tools are used: a Positivstellensatz by Prestel and Delzell describing positive polynomials on compact semialgebraic sets using Archimedean module of length N. The other tool is a representation of positive polynomials in a specific form due to Berr and Wörmann. This, combined with a careful calculation of leading terms of occurring polynomials finishes the proof.


Sign in / Sign up

Export Citation Format

Share Document