scholarly journals Galois theory for general systems of polynomial equations

2019 ◽  
Vol 155 (2) ◽  
pp. 229-245 ◽  
Author(s):  
A. Esterov

We prove that the monodromy group of a reduced irreducible square system of general polynomial equations equals the symmetric group. This is a natural first step towards the Galois theory of general systems of polynomial equations, because arbitrary systems split into reduced irreducible ones upon monomial changes of variables. In particular, our result proves the multivariate version of the Abel–Ruffini theorem: the classification of general systems of equations solvable by radicals reduces to the classification of lattice polytopes of mixed volume 4 (which we prove to be finite in every dimension). We also notice that the monodromy of every general system of equations is either symmetric or imprimitive. The proof is based on a new result of independent importance regarding dual defectiveness of systems of equations: the discriminant of a reduced irreducible square system of general polynomial equations is a hypersurface unless the system is linear up to a monomial change of variables.

1995 ◽  
Vol 117 (B) ◽  
pp. 71-79 ◽  
Author(s):  
M. Raghavan ◽  
B. Roth

Problems in mechanisms analysis and synthesis and robotics lead naturally to systems of polynomial equations. This paper reviews the state of the art in the solution of such systems of equations. Three well-known methods for solving systems of polynomial equations, viz., Dialytic Elimination, Polynomial Continuation, and Grobner bases are reviewed. The methods are illustrated by means of simple examples. We also review important kinematic analysis and synthesis problems and their solutions using these mathematical procedures.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
A. Esterov ◽  
L. Lang

AbstractWe introduce a new technique to prove connectivity of subsets of covering spaces (so called inductive connectivity), and apply it to Galois theory of problems of enumerative geometry. As a model example, consider the problem of permuting the roots of a complex polynomial $$f(x) = c_0 + c_1 x^{d_1} + \cdots + c_k x^{d_k}$$ f ( x ) = c 0 + c 1 x d 1 + ⋯ + c k x d k by varying its coefficients. If the GCD of the exponents is d, then the polynomial admits the change of variable $$y=x^d$$ y = x d , and its roots split into necklaces of length d. At best we can expect to permute these necklaces, i.e. the Galois group of f equals the wreath product of the symmetric group over $$d_k/d$$ d k / d elements and $${\mathbb {Z}}/d{\mathbb {Z}}$$ Z / d Z . We study the multidimensional generalization of this equality: the Galois group of a general system of polynomial equations equals the expected wreath product for a large class of systems, but in general this expected equality fails, making the problem of describing such Galois groups unexpectedly rich.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Philipp Nuspl

AbstractWe investigate the complexity of solving systems of polynomial equations over finite groups. In 1999 Goldmann and Russell showed $$\mathrm {NP}$$ NP -completeness of this problem for non-Abelian groups. We show that the problem can become tractable for some non-Abelian groups if we fix the number of equations. Recently, Földvári and Horváth showed that a single equation over groups which are semidirect products of a p-group with an Abelian group can be solved in polynomial time. We generalize this result and show that the same is true for systems with a fixed number of equations. This shows that for all groups for which the complexity of solving one equation has been proved to be in $$\mathrm {P}$$ P so far, solving a fixed number of equations is also in $$\mathrm {P}$$ P . Using the collecting procedure presented by Horváth and Szabó in 2006, we furthermore present a faster algorithm to solve systems of equations over groups of order pq.


1995 ◽  
Vol 117 (B) ◽  
pp. 71-79 ◽  
Author(s):  
M. Raghavan ◽  
B. Roth

Problems in mechanisms analysis and synthesis and robotics lead naturally to systems of polynomial equations. This paper reviews the state of the art in the solution of such systems of equations. Three well-known methods for solving systems of polynomial equations, viz., Dialytic Elimination, Polynomial Continuation, and Grobner bases are reviewed. The methods are illustrated by means of simple examples. We also review important kinematic analysis and synthesis problems and their solutions using these mathematical procedures.


2014 ◽  
Vol 13 (06) ◽  
pp. 1450013 ◽  
Author(s):  
Francis N. Castro ◽  
Ivelisse M. Rubio

We present an elementary method to compute the exact p-divisibility of exponential sums of systems of polynomial equations over the prime field. Our results extend results by Carlitz and provide concrete and simple conditions to construct families of polynomial equations that are solvable over the prime field.


2008 ◽  
Vol 54 (5) ◽  
pp. 2303-2316 ◽  
Author(s):  
Randall Dougherty ◽  
Chris Freiling ◽  
Kenneth Zeger

Author(s):  
I. Nikitin

Given a bivariate system of polynomial equations with fixed support sets [Formula: see text] it is natural to ask which multiplicities its solutions can have. We prove that there exists a system with a solution of multiplicity [Formula: see text] for all [Formula: see text] in the range [Formula: see text], where [Formula: see text] is the set of all integral vectors that shift B to a subset of [Formula: see text]. As an application, we classify all pairs [Formula: see text] such that the system supported at [Formula: see text] does not have a solution of multiplicity higher than [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document