Heterogeneous volcanism across the Permian–Triassic Boundary in South China and implications for the Latest Permian Mass Extinction: New evidence from volcanic ash layers in the Lower Yangtze Region

2016 ◽  
Vol 127 ◽  
pp. 197-210 ◽  
Author(s):  
Zhiwei Liao ◽  
Wenxuan Hu ◽  
Jian Cao ◽  
Xiaolin Wang ◽  
Suping Yao ◽  
...  
2021 ◽  
pp. 1-53
Author(s):  
Demir Altıner ◽  
Jonathan L. Payne ◽  
Daniel J. Lehrmann ◽  
Sevinç Özkan-Altıner ◽  
Brian M. Kelley ◽  
...  

Abstract Foraminifera are important components of tropical marine benthic ecosystems and their recovery pattern from the end-Permian mass extinction can yield insights into the Mesozoic history of this group. Here we report the calcareous and agglutinated foraminifera recovered from five measured stratigraphic sections on the Great Bank of Guizhou, an uppermost Permian to Upper Triassic isolated carbonate platform in the Nanpanjiang Basin, south China. The material contains >100 Triassic species, including three that are newly described (Arenovidalina weii n. sp., Meandrospira? enosi n. sp., and Spinoendotebanella lehrmanni n. gen., n. sp.), ranging from Griesbachian (Induan) to Cordevolian (Carnian) age. The species belong to the classes Miliolata, Textulariata, Fusulinata, Nodosariata, and to an unknown class housing all aragonitic forms of the orders Involutinida and Robertinida. Based on previously established conodont zones and carbon isotope chemostratigraphy, the Griesbachian (early Induan) through Illyrian (late Anisian) interval has been subdivided into 12 foraminiferal zones and two unnamed intervals devoid of foraminifera. Following the extinction at the Permian-Triassic boundary, habitable ecological niches of Griesbachian age were invaded by disaster taxa that subsequently became extinct during the Dienerian (late Induan) and left no younger descendants. The disaster taxa were replaced by Lazarus taxa with Permian origins, which were then decimated by the Smithian-Spathian (mid-Olenekian) boundary crisis. The tempo of recovery appears to have been modulated by environmental changes during the Griesbachian through Smithian that involved both climate change and expansion of anoxic ocean bottom waters. Uninterrupted and lasting recovery of benthic foraminifera did not begin until the Spathian. UUID: http://zoobank.org/2a6e9061-b163-402a-9098-8765a80576b3


2006 ◽  
Vol 143 (3) ◽  
pp. 301-327 ◽  
Author(s):  
ZHONG-QIANG CHEN ◽  
KUNIO KAIHO ◽  
ANNETTE D. GEORGE ◽  
JINNAN TONG

Eight brachiopod species in seven genera are described from the Permian–Triassic boundary beds of South China and northern Italy. The brachiopods from northern Italy are described for the first time and include two new species: Orbicoelia dolomitensis Chen and Spirigerella? teseroi Chen. The Permian affinity of these brachiopods and their stratigraphical position above the extinction horizon demonstrate that they are survivors from the end-Permian mass extinction. The surviving brachiopods from South China, which was located at the eastern margin of the Palaeo-Tethys Ocean, are considerably abundant and diverse and are dominated by geographically widespread generalist elements adapted to a wide variety of environments. They were mostly limited to the Upper Permian to lowest Griesbachian. In contrast, the survivors in northern Italy, which was situated at the western margin of the Palaeo-Tethys, comprise elements ranging from the Carboniferous to Permian or widespread Tethyan genera. These survivors did not occur in the pre-extinction western Tethyan oceans but migrated into this region after the end-Permian extinction event. Disaster taxon Lingula proliferated slightly earlier in western Tethyan oceans than in eastern Tethyan regions following the event. Survival brachiopods from both regions appear to have a generic affinity, although they do not share any species. Both South Chinese and Italian survival faunas support the view that the survival interval is the duration when survivors are dominated by geographically widespread generalist organisms adapted to a wide variety of ecological conditions.


2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


2021 ◽  
Author(s):  
Zhenyang Zhao ◽  
Shuangjian Li ◽  
Genhou Wang ◽  
Jian Gao ◽  
Tianbo Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document