isotope composition
Recently Published Documents





2022 ◽  
Vol 13 (1) ◽  
P. Bouilhol ◽  
B. Debret ◽  
E. C. Inglis ◽  
M. Warembourg ◽  
T. Grocolas ◽  

AbstractSerpentinites are an important sink for both inorganic and organic carbon, and their behavior during subduction is thought to play a fundamental role in the global cycling of carbon. Here we show that fluid-derived veins are preserved within the Zermatt-Saas ultra-high pressure serpentinites providing key evidence for carbonate mobility during serpentinite devolatilisation. We show through the O, C, and Sr isotope analyses of vein minerals and the host serpentinites that about 90% of the meta-serpentinite inorganic carbon is remobilized during slab devolatilisation. In contrast, graphite-like carbonaceous compounds remain trapped within the host rock as inclusions within metamorphic olivine while the bulk elemental and isotope composition of organic carbon remains relatively unchanged during the subduction process. This shows a decoupling behavior of carbon during serpentinite dehydration in subduction zones. This process will therefore facilitate the transfer of inorganic carbon to the mantle wedge and the preferential slab sequestration of organic carbon en route to the deep mantle.

2022 ◽  
Katarzyna Stanienda-Pilecki

Abstract The results of researches of the stable isotopes, carbon 13C and oxygen 18O, measured in Triassic limestones of Opole Silesia in Poland were presented in this article. The study was carried out to obtain data for interpretation of the environment of these rocks formation. Moreover, it was possible to form the theory about diagenetic processes which influenced on the mineral composition of limestone and some of their carbonte phases. The results of study show a general differentiation of δ13C and δ18O contents in carbonate minerals. All δ18O values are less than 0 ‰. It indicates that the origin oxygen isotope composition could be probably reset by diagenesis. The crystallization temperatures of low-Mg calcite and high-Mg, calculated on the basis of δ18O values are greater than 25 oC. They are higher than typical for sea basin and are also not be related to the presence of hydrothermal solutions. The increased temperatures of calcites crystallization are related to diagenetic processes that took place after the deposition and burial of carbonate material. The preservation of high-Mg calcite, an ustable carbonate phase, which is usually trasformed into low-Mg calcite during diagenesis, is probably connected with the increased salinity of the sea basin in which studied limestones were formed.

2022 ◽  
Vol 12 (1) ◽  
Oksana L. Rozanova ◽  
Sergey M. Tsurikov ◽  
Marina G. Krivosheina ◽  
Andrei V. Tanasevitch ◽  
Dmitry N. Fedorenko ◽  

AbstractForest canopy is densely populated by phyto-, sapro-, and microbiphages, as well as predators and parasitoids. Eventually, many of crown inhabitants fall down, forming so-called ‘arthropod rain’. Although arthropod rain can be an important food source for litter-dwelling predators and saprophages, its origin and composition remains unexplored. We measured stable isotope composition of the arthropod rain in a temperate mixed forest throughout the growing season. Invertebrates forming arthropod rain were on average depleted in 13C and 15N by 1.6‰ and 2.7‰, respectively, compared to the soil-dwelling animals. This difference can be used to detect the contribution of the arthropod rain to detrital food webs. Low average δ13C and δ15N values of the arthropod rain were primarily driven by the presence of wingless microhytophages, represented mainly by Collembola and Psocoptera, and macrophytophages, mainly aphids, caterpillars, and heteropterans. Winged arthropods were enriched in heavy isotopes relative to wingless specimens, being similar in the isotopic composition to soil-dwelling invertebrates. Moreover, there was no consistent difference in δ13C and δ15N values between saprophages and predators among winged insects, suggesting that winged insects in the arthropod rain represented a random assemblage of specimens originating in different biotopes, and are tightly linked to soil food webs.

2022 ◽  
Vol 578 ◽  
pp. 117303
Florian Kurzweil ◽  
Olaf Dellwig ◽  
Martin Wille ◽  
Ronny Schoenberg ◽  
Helge W. Arz ◽  

2022 ◽  
Vol 216 ◽  
pp. 106338
Nadine J. Kanik ◽  
Fred J. Longstaffe ◽  
Artur Kuligiewicz ◽  
Arkadiusz Derkowski

2022 ◽  
pp. 127416
Fernando Gázquez ◽  
Luis Quindós ◽  
Daniel Rábago ◽  
Ismael Fuente ◽  
Santiago Celaya ◽  

2022 ◽  
Vol 578 ◽  
pp. 117320
Anna R. Waldeck ◽  
Haley C. Olson ◽  
Weiqi Yao ◽  
Clara L. Blättler ◽  
Adina Paytan ◽  

Sign in / Sign up

Export Citation Format

Share Document