volcanic ash
Recently Published Documents


TOTAL DOCUMENTS

2916
(FIVE YEARS 585)

H-INDEX

78
(FIVE YEARS 7)

2022 ◽  
Vol 22 (1) ◽  
pp. 577-596
Author(s):  
Susan J. Leadbetter ◽  
Andrew R. Jones ◽  
Matthew C. Hort

Abstract. Atmospheric dispersion model output is frequently used to provide advice to decision makers, for example, about the likely location of volcanic ash erupted from a volcano or the location of deposits of radioactive material released during a nuclear accident. Increasingly, scientists and decision makers are requesting information on the uncertainty of these dispersion model predictions. One source of uncertainty is in the meteorology used to drive the dispersion model, and in this study ensemble meteorology from the Met Office ensemble prediction system is used to provide meteorological uncertainty to dispersion model predictions. Two hypothetical scenarios, one volcanological and one radiological, are repeated every 12 h over a period of 4 months. The scenarios are simulated using ensemble meteorology and deterministic forecast meteorology and compared to output from simulations using analysis meteorology using the Brier skill score. Adopting the practice commonly used in evaluating numerical weather prediction (NWP) models where observations are sparse or non-existent, we consider output from simulations using analysis NWP data to be truth. The results show that on average the ensemble simulations perform better than the deterministic simulations, although not all individual ensemble simulations outperform their deterministic counterpart. The results also show that greater skill scores are achieved by the ensemble simulation for later time steps rather than earlier time steps. In addition there is a greater increase in skill score over time for deposition than for air concentration. For the volcanic ash scenarios it is shown that the performance of the ensemble at one flight level can be different to that at a different flight level; e.g. a negative skill score might be obtained for FL350-550 and a positive skill score for FL200-350. This study does not take into account any source term uncertainty, but it does take the first steps towards demonstrating the value of ensemble dispersion model predictions.


Author(s):  
Tatsuhiro Kato ◽  
Yong Guo ◽  
Reiko Fujimura ◽  
Takamichi Nakamura ◽  
Tomoyasu Nishizawa ◽  
...  

The genome sequence of Acidithiobacillus ferrooxidans strain NFP31, which is a chemolithoautotrophic iron-oxidizing bacterium that inhabits acidified volcanic deposits on Mount Oyama, Miyake Island (Miyake-jima), Japan, was determined to identify the genetic characteristics associated with pioneer microbes in newly placed pyroclastic deposits.


2022 ◽  
Author(s):  
Federica Torrisi ◽  
Federico Folzani ◽  
Claudia Corradino ◽  
Eleonora Amato ◽  
Ciro Del Negro

2022 ◽  
Author(s):  
James O. MacLeod ◽  
Kieran Wood ◽  
T. Rendall ◽  
Thomas S. Richardson ◽  
Mattew Watson
Keyword(s):  

2022 ◽  
pp. 331-418
Author(s):  
Loredana Contrafatto
Keyword(s):  

Author(s):  
William D Fahy ◽  
Elena C Maters ◽  
Rona Giese-Miranda ◽  
Michael P Adams ◽  
Leif G Jahn ◽  
...  

Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is...


2021 ◽  
Vol 119 (1) ◽  
pp. e2114213118
Author(s):  
Vasıf Şahoğlu ◽  
Johannes H. Sterba ◽  
Timor Katz ◽  
Ümit Çayır ◽  
Ümit Gündoğan ◽  
...  

The Late Bronze Age Thera eruption was one of the largest natural disasters witnessed in human history. Its impact, consequences, and timing have dominated the discourse of ancient Mediterranean studies for nearly a century. Despite the eruption’s high intensity (Volcanic Explosivity Index 7; Dense Rock Equivalent of 78 to 86 km) [T. H. Druitt, F. W. McCoy, G. E. Vougioukalakis, Elements 15, 185–190 (2019)] and tsunami-generating capabilities [K. Minoura et al., Geology 28, 59–62 (2000)], few tsunami deposits are reported. In contrast, descriptions of pumice, ash, and tephra deposits are widely published. This mismatch may be an artifact of interpretive capabilities, given how rapidly tsunami sedimentology has advanced in recent years. A well-preserved volcanic ash layer and chaotic destruction horizon were identified in stratified deposits at Çeşme-Bağlararası, a western Anatolian/Aegean coastal archaeological site. To interpret these deposits, archaeological and sedimentological analysis (X-ray fluorescence spectroscopy instrumental neutron activation analysis, granulometry, micropaleontology, and radiocarbon dating) were performed. According to the results, the archaeological site was hit by a series of strong tsunamis that caused damage and erosion, leaving behind a thick layer of debris, distinguishable by its physical, biological, and chemical signature. An articulated human and dog skeleton discovered within the tsunami debris are in situ victims related to the Late Bronze Age Thera eruption event. Calibrated radiocarbon ages from well-constrained, short-lived organics from within the tsunami deposit constrain the event to no earlier than 1612 BCE. The deposit provides a time capsule that demonstrates the nature, enormity, and expansive geographic extent of this catastrophic event.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Jonathan Almirón ◽  
María Vargas ◽  
Danny Tupayachy-Quispe ◽  
Sophie Duquesne ◽  
Francine Roudet ◽  
...  

In this research, the influence of natural zeolites obtained from the volcanic ash of the Ubinas volcano has been studied as synergistic agents in a flame-retardant system (composed of ammonium polyphosphate, pentaerythritol, and polypropylene). Four zeolites were synthesized from volcanic ash, including those that had been calcined and those that had not. These were then placed in an alkaline solution at three synthesis temperatures. Zeolites were characterized through X-ray diffraction, specific surface area by nitrogen adsorption analysis (Brunauer–Emmett–Teller) and scanning electron microscopy. Polypropylene matrix composites were prepared with ammonium polyphosphate, pentaerythritol and zeolites at 1, 5 and 9%. Its thermal stability and fire resistance were evaluated by thermogravimetric analysis, limiting oxygen index, vertical burning test and cone calorimeter and its morphological structure by scanning electron microscopy. It was determined that the synthesis temperature and the use of calcined and without calcined volcanic ash have an influence on the characteristics of the zeolites and on its synergistic action.


Sign in / Sign up

Export Citation Format

Share Document