283 EFFECTS OF COMBINING ANTIMUSCARINICS AND Β3-ADRENOCEPTOR AGONISTS ON CONTRACTIONS INDUCED BY ELECTRICAL FIELD STIMULATION OF RAT ISOLATED URINARY BLADDER STRIPS

2013 ◽  
Vol 189 (4S) ◽  
Author(s):  
Moèz Rekik ◽  
Céline Rouget ◽  
Stefano Palea ◽  
Philippe Lluel ◽  
Eliot H. Ohlstein ◽  
...  
1989 ◽  
Vol 20 (5) ◽  
pp. 663-669 ◽  
Author(s):  
Carlo Alberto Maggi ◽  
Riccardo Patacchini ◽  
Paolo Santicioli ◽  
Damiano Turini ◽  
Gabriele Barbanti ◽  
...  

Open Medicine ◽  
2009 ◽  
Vol 4 (2) ◽  
pp. 192-197 ◽  
Author(s):  
A. Canda ◽  
Christopher Chapple ◽  
Russ Chess-Williams

AbstractThe aim of the study was to determine pathways involved in contraction and relaxation of the mouse urinary bladder. Mouse bladder strips were set up in gassed Krebs-bicarbonate solution and responses to various drugs and electrical field stimulation were obtained. Isoprenaline (b-receptor agonist) caused a 63% inhibition of carbachol precontracted detrusor (EC50=2nM). Carbachol caused contraction (EC50=0.3µM), responses were antagonised more potently by 4-DAMP (M3-antagonist) than methoctramine (M2-antagonist). Electrical field stimulation caused contraction, which was inhibited by atropine (60%) and less by guanethidine and α,β-methylene-ATP. The neurogenic responses were not potentiated by inhibition of nitric oxide synthase. Presence of an intact urothelium significantly depressed responses to carbachol (p=0.02) and addition of indomethacin and L-NNA to remove prostaglandin and nitric oxide production respectively did not prevent the inhibitory effect of the urothelium. In conclusion, b-receptor agonists cause relaxation and muscarinic agonists cause contraction via the M3-receptor. Acetylcholine is the main neurotransmitter causing contraction while nitric oxide has a minor role. The mouse and human urothelium are similar in releasing a factor that inhibits contraction of the detrusor muscle which is unidentified but is not nitric oxide or a prostaglandin. Therefore, the mouse may be used as a model to study the lower urinary tract.


1976 ◽  
Vol 41 (5) ◽  
pp. 764-771 ◽  
Author(s):  
J. Richardson ◽  
J. Beland

Human airways, from the middle of the trachea to the distal bronchi, were studied in vitro for the presence of inhibitory nerves. The tissue was obtained from operations and from recent autopsies. Electrical field stimulation of the tissues demonstrated cholinergic, excitatory nerves and their effect was blocked by atropine. Field stimulation of the tissues, in the presence of atropine, relaxed the smooth muscle even when the muscle was contracted by histamine. The field stimulation-induced relaxation was neither blocked nor modified by adrenergic blocking agents. Maximum relaxation of the bronchial muscle was obtained with a pulse duration of 1–2 ms, 70 V,and frequencies of 20 Hz and greater. The tracheal smooth muscle showed 85%of maximal relaxation with a frequency of 10 Hz. Tetrodotoxin, blocked the field stimulation-induced relaxation for pulse durations of 2 ms; this indicated that nerves were being stimulated. The airway system shows some of the characteristics of the nonadrenergic inhibitory system in the gastrointestinal tract and of the system reported in the guinea pig trachealis muscle.No evidence of adrenergic inhibitory fibers was found in the bronchial muscle with either pharmacological or histochemical techniques. These findings suggest that the nonadrenergic inhibitory system is the principal inhibitory system for the smooth muscle of human airways. We suggest that a defect in the airway system, such as that shown in the gastrointestinal tract, may be an explanation for the hyperreactive airways of asthma and chronic bronchitis.


Sign in / Sign up

Export Citation Format

Share Document