Influence of vented floors on the across-wind response of tall buildings

2021 ◽  
Vol 209 ◽  
pp. 104480
Author(s):  
Rishabh R. Moorjani ◽  
Franklin T. Lombardo ◽  
Austin F. Devin ◽  
Bradley S. Young ◽  
William F. Baker ◽  
...  
Keyword(s):  
Author(s):  
Austin F. Devin ◽  
Aditya P. Kulkarni ◽  
Bradley S. Young ◽  
William F. Baker

<p>The architectural form of tall and supertall buildings is a fundamentally influential factor in the building’s wind response. Under the action of wind, a tower’s shape can significantly influence the building’s occupant comfort levels, serviceability performance, as well as the effective wind loads which a structure must resist. As tall buildings advance to ever-increasing heights and, more recently, unprecedented slenderness ratios, the across-wind response, or lift response, of towers due to vortex shedding becomes the predominant contributor to wind response. The frequency and intensity of vortex formation off a bluff body is a function of the shape and width of the bluff body, and the speed of the flow. This is a critical relationship in wind engineering where fluid dynamics and architecture intersect, and is defined by the powerful Strouhal equation [1]. This paper shall investigate wind response as a function of the interrelation of the Strouhal number parameters with the structure’s own dynamic properties, as well as the wind environment in which the building is located. In addition, the potential benefit of Critical Width and Critical Mean Recurrence Interval plots as initial indicators at the conceptual stage of tower design will be highlighted.</p>


1982 ◽  
Vol 4 (4) ◽  
pp. 256-262 ◽  
Author(s):  
K.C.S. Kwok
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ki-Pyo You ◽  
Jang-Youl You ◽  
Young-Moon Kim

Modern tall buildings use lighter construction materials that have high strength and less stiffness and are more flexible. Although this results in the improvement of structural safety, excessive wind-induced excitations could lead to occupant discomfort. The optimal control law of a linear quadratic Gaussian (LQG) controller with an active tuned mass damper (ATMD) is used for reducing the along-wind response of a tall building. ATMD consists of a second mass with optimum parameters for tuning frequency and damping ratio of the tuned mass damper (TMD), under the stationary random load, was used. A fluctuating along-wind load, acting on a tall building, was treated as a stationary Gaussian white noise and was simulated numerically, in the time domain, using the along-wind load spectra proposed by G. Solari in 1993. Using this simulated wind load, it was possible to calculate the along-wind responses of a tall building (with and without the ATMD), using an LQG controller. Comparing the RMS (root mean square) response revealed that the numerically simulated along-wind responses, without ATMD, are a good approximation to the closed form response, and that the reduced responses with ATMD and LQG controller were estimated by varying the values of control design parameters.


Sign in / Sign up

Export Citation Format

Share Document