vortex formation
Recently Published Documents


TOTAL DOCUMENTS

1001
(FIVE YEARS 195)

H-INDEX

57
(FIVE YEARS 5)

Author(s):  
Hadi Barati ◽  
Hadi Barati ◽  
Abdellah Kharicha ◽  
Mohamad Al-Nasser ◽  
Daniel Kreuzer ◽  
...  

Abstract Magnetohydrodynamic instability in a high-intensity arc, similar to typical arcs in DC electric arc furnaces, is simulated using an induction based model under 2D axisymmetric conditions. Time-averaged results show a good agreement with steady-state calculated results expected for a stable arc. The transient results declare that z-pinch close to the cathode, occurring due to the high electrical current density, is responsible for arc instability in this region. The unstable behavior of the arc can be evaluated in a periodic procedure. Moreover, correlations between the fluctuations in total voltage drop curve and the arc shape are investigated: when the arc is in form of column (or bell) the total voltage drop is on a minimum peak; if there is an irregular expansion of the arc in form of arms, the total voltage drop shows a maximum peak.


2022 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Diana Kreitmayer ◽  
Srikanth R. Gopireddy ◽  
Tomomi Matsuura ◽  
Yuichi Aki ◽  
Yuta Katayama ◽  
...  

Understanding the hydrodynamic conditions in bioreactors is of utmost importance for the selection of operating conditions during cell culture process development. In the present study, the two-phase flow in the lab-scale single-use bioreactor XcellerexTM XDR-10 is characterized for working volumes from 4.5 L to 10 L, impeller speeds from 40 rpm to 360 rpm, and sparging with two different microporous spargers at rates from 0.02 L min−1 to 0.5 L min−1. The numerical simulations are performed with the one-way coupled Euler–Lagrange and the Euler–Euler models. The results of the agitated liquid height, the mixing time, and the volumetric oxygen mass transfer coefficient are compared to experiments. For the unbaffled XDR-10, strong surface vortex formation is found for the maximum impeller speed. To support the selection of suitable impeller speeds for cell cultivation, the surface vortex formation, the average turbulence energy dissipation rate, the hydrodynamic stress, and the mixing time are analyzed and discussed. Surface vortex formation is observed for the maximum impeller speed. Mixing times are below 30 s across all conditions, and volumetric oxygen mass transfer coefficients of up to 22.1 h−1 are found. The XDR-10 provides hydrodynamic conditions which are well suited for the cultivation of animal cells, despite the unusual design of a single bottom-mounted impeller and an unbaffled cultivation bioreactor.


Author(s):  
K. A. Bashmur ◽  
◽  
E. A. Petrovsky ◽  
V. S. Tynchenko ◽  
V. V. Bukhtoyarov ◽  
...  

This paper considers the issue of heterogeneous system separation efficiency under the action of centrifugal forces working in hydrocyclones. The main problem with these apparatuses is related to vortex forming. The paper describes the negative effects of vortexes on the heterogeneous medium separation process. A hydrocyclone design was developed and described, which improves the hydrocyclone separation capacity. This design introduces a vortex breaker. Furthermore, vortex formation can be eliminated or minimized by providing the vortex breaker with a rough surface. To determine the separation efficiency and the adequacy of the proposed solution, hydrodynamic computer simulation and experimental studies were conducted. Solidworks Flow Simulation software was used for hydrodynamic computer simulation. To check the medium separation degree, an experimental study was conducted showing improvement of the hydrocyclone separation capacity efficiency by 3% in the developed apparatus compared to conventional hydrocyclone designs. Keywords: hydrocyclone; separation; separating capacity; vortex breaker; heterogeneous system; oil preparation; hydrodynamics.


Author(s):  
D. Sedlacek ◽  
S. Biechele ◽  
C. Breitsamter

AbstractFor an improvement of the flight stability characteristics of high-agility aircraft, the comprehension of the vortex development, behavior and break down is important. Therefore, numerical investigations on low aspect ratio, multiple-swept-wing configurations are performed in this study to analyze the influence of the numerical method on the vortex formation. The discussed configurations are based on a triple- and double-delta wing planform. Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations and delayed detached eddy simulations (DDES) are performed for both configurations. The simulations are executed at Re $$= 3.0\times 10^6$$ = 3.0 × 10 6 , symmetric freestream conditions, and an angle of attack of $$\alpha = 16^\circ$$ α = 16 ∘ , for consistency with reference wind tunnel data. For the triple-delta-wing configuration, the results of the DDES show a satisfying accordance to the experiments compared to URANS, especially for the flow field and the pitching moment coefficient. For the double-delta-wing configuration, the URANS simulation provides reliable results with low deviation of the aerodynamic coefficients and high precision for the flow field development with respect to the experimental data.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042002
Author(s):  
P Churin ◽  
V Pomelov

Abstract The article is devoted to the issues of ensuring the stability of large-span bridge structures by means of their aerodynamic damping. Aerodynamic damping allows you to change the nature of the wind flow around structures or their individual elements, which can significantly reduce the loads that cause the occurrence of various aeroelastic phenomena. Aerodynamic damping devices (fairings, deflectors) are based on the phenomenon of changes in the circulation of the wind flow around the structure, the purpose of their use, as a rule, is to disrupt regular vortex formation. The main problem when using these devices is the lack of recommendations for their selection and the need for costly experimental studies to assess their effectiveness for each specific bridge. One of the ways to reduce the time and cost of research is preliminary numerical modeling in specialized software systems. Within the framework of this study, the most common types of aerodynamic dampers have been analyzed, and typical designs of large-span beam bridges have been selected. For the selected structures, a preliminary numerical simulation was carried out in a two-dimensional formulation. Based on the results obtained, the most effective designs of deflectors and fairings were determined.


Author(s):  
Anna Grünwald ◽  
Jana Korte ◽  
Nadja Wilmanns ◽  
Christian Winkler ◽  
Katharina Linden ◽  
...  

Abstract Purpose Patients with a functionally univentricular heart represent one of the most common severe cardiac lesions with a prevalence of 3 per 10,000 live births. Hemodynamics of the singular ventricle is a major research topic in cardiology and there exists a relationship between fluid dynamical features and cardiac behavior in health and disease. The aim of the present work was to compare intraventricular flow in single right ventricle (SRV) patients and subjects with healthy left hearts (LV) through patient-specific CFD simulations. Methods Three-dimensional real-time echocardiographic images were obtained for five SRV patients and two healthy subjects and CFD simulations with a moving mesh methodology were performed. Intraventricular vortex formation and vortex formation time (VFT) as well as the turbulent kinetic energy (TKE) and ventricular washout were evaluated. Results The results show significantly lower values for the VFT and the TKE in SRV patients compared with healthy LV subjects. Furthermore, vortex formation does not progress to the apex in SRV patients. These findings were confirmed by a significantly lower washout in SRV patients. Conclusions The study pinpoints the intriguing role of intraventricular flows to characterize performance of SRVs that goes beyond standard clinical metrics such as ejection fraction.


2021 ◽  
Vol 931 ◽  
Author(s):  
Long Chen ◽  
Luyao Wang ◽  
Chao Zhou ◽  
Jianghao Wu ◽  
Bo Cheng

The mechanisms of leading-edge vortex (LEV) formation and its stable attachment to revolving wings depend highly on Reynolds number ( $\textit {Re}$ ). In this study, using numerical methods, we examined the $\textit {Re}$ dependence of LEV formation dynamics and stability on revolving wings with $\textit {Re}$ ranging from 10 to 5000. Our results show that the duration of the LEV formation period and its steady-state intensity both reduce significantly as $\textit {Re}$ decreases from 1000 to 10. Moreover, the primary mechanisms contributing to LEV stability can vary at different $\textit {Re}$ levels. At $\textit {Re} <200$ , the LEV stability is mainly driven by viscous diffusion. At $200<\textit {Re} <1000$ , the LEV is maintained by two distinct vortex-tilting-based mechanisms, i.e. the planetary vorticity tilting and the radial–tangential vorticity balance. At $\textit {Re}>1000$ , the radial–tangential vorticity balance becomes the primary contributor to LEV stability, in addition to secondary contributions from tip-ward vorticity convection, vortex compression and planetary vorticity tilting. It is further shown that the regions of tip-ward vorticity convection and tip-ward pressure gradient almost overlap at high $\textit {Re}$ . In addition, the contribution of planetary vorticity tilting in LEV stability is $\textit {Re}$ -independent. This work provides novel insights into the various mechanisms, in particular those of vortex tilting, in driving the LEV formation and stability on low- $\textit {Re}$ revolving wings.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 412
Author(s):  
Michael Krane

In this paper, the timing of vortex formation on the glottal jet is studied using previously published velocity measurements of flow through a scaled-up model of the human vocal folds. The relative timing of the pulsatile glottal jet and the instability vortices are acoustically important since they determine the harmonic and broadband content of the voice signal. Glottis exit jet velocity time series were extracted from time-resolved planar DPIV measurements. These measurements were acquired at four glottal flow speeds (uSS = 16.1–38 cm/s) and four glottis open times (To = 5.67–23.7 s), providing a Reynolds number range Re = 4100–9700 and reduced vibration frequency f* = 0.01−0.06. Exit velocity waveforms showed temporal behavior on two time scales, one that correlates to the period of vibration and another characterized by short, sharp velocity peaks (which correlate to the passage of instability vortices through the glottis exit plane). The vortex formation time, estimated by computing the time difference between subsequent peaks, was shown to be not well-correlated from one vibration cycle to the next. The principal finding is that vortex formation time depends not only on cycle phase, but varies strongly with reduced frequency of vibration. In all cases, a strong high-frequency burst of vortex motion occurs near the end of the cycle, consistent with perceptual studies using synthesized speech.


Sign in / Sign up

Export Citation Format

Share Document