Refinement operators for directed labeled graphs with applications to instance-based learning

2018 ◽  
Vol 161 ◽  
pp. 425-441
Author(s):  
Santiago Ontañón ◽  
Ali Shokoufandeh
2019 ◽  
Vol 100 (10) ◽  
Author(s):  
Peter Bjørn Jørgensen ◽  
Estefanía Garijo del Río ◽  
Mikkel N. Schmidt ◽  
Karsten Wedel Jacobsen

2015 ◽  
Vol 08 (03) ◽  
pp. 1550052 ◽  
Author(s):  
N. K. Sudev ◽  
K. A. Germina ◽  
K. P. Chithra

For a non-empty ground set [Formula: see text], finite or infinite, the set-valuation or set-labeling of a given graph [Formula: see text] is an injective function [Formula: see text], where [Formula: see text] is the power set of the set [Formula: see text]. A set-valuation or a set-labeling of a graph [Formula: see text] is an injective set-valued function [Formula: see text] such that the induced function [Formula: see text] is defined by [Formula: see text] for every [Formula: see text], where [Formula: see text] is a binary operation on sets. Let [Formula: see text] be the set of all non-negative integers and [Formula: see text] be its power set. An integer additive set-labeling (IASL) is defined as an injective function [Formula: see text] such that the induced function [Formula: see text] is defined by [Formula: see text]. An IASL [Formula: see text] is said to be an integer additive set-indexer if [Formula: see text] is also injective. A weak IASL is an IASL [Formula: see text] such that [Formula: see text]. In this paper, critical and creative review of certain studies made on the concepts and properties of weak integer additive set-valued graphs is intended.


Sign in / Sign up

Export Citation Format

Share Document