contract net
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2684
Author(s):  
Sami Mansri ◽  
Malek Alrashidi

In this study, the discrete and dynamic problem of berth allocation in maritime terminals, is investigated. The suggested resolution method relies on a paradigm of optimization with two techniques: heuristic and multi-agent. Indeed, a set of techniques such as the protocol of negotiation named contract net, the multi-agent interactions, and Worst-Fit arrangement technique, are involved. The main objective of the study is to propose a solution for attributing m parallel machines to a set of activities. The contribution of the study is to provide a detailed modeling of the discrete and dynamic berth allocation problem by establishing the corresponding models using a multi-agent methodology. A set of numerical experiments are detailed to prove the performance of the introduced multi-agent strategy compared with genetic algorithm and tabu search.


Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 73
Author(s):  
Yutao Chen ◽  
Guoqing Tian ◽  
Junyou Guo ◽  
Jie Huang

Space situational awareness (SSA) plays an important role in maintaining space advantages. Task planning is one of the key technologies in SSA to allocate multiple tasks to multiple satellites, so that a satellite may be allocated to supervise multiple space objects, and a space object may be supervised by multiple satellites. This paper proposes a hierarchical and distributed task-planning framework for SSA systems with focus on fast and effective task planning customized for SSA. In the framework, a global task-planner layer performs satellite and object clustering, so that satellites are clustered into multiple unique clusters on the basis of their positions, while objects are clustered into multiple possibly intersecting clusters, hence allowing for a single object to be supervised by multiple satellites. In each satellite cluster, a local task planner performs distributed task planning using the contract-net protocol (CNP) on the basis of the position and velocity of satellites and objects. In addition, a customized discrete particle swarm optimization (DPSO) algorithm was developed to search for the optimal task-planning result in the CNP. Simulation results showed that the proposed framework can effectively achieve task planning among multiple satellites and space objects. The efficiency and scalability of the proposed framework are demonstrated through static and dynamic orbital simulations.


Author(s):  
Saber Ikram ◽  
El Bachtiri Rachid ◽  
Bendali Wadie ◽  
Boussetta Mohammed ◽  
El hammoumi Karima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document