scholarly journals New upper bounds on the spectral radius of trees with the given number of vertices and maximum degree

2013 ◽  
Vol 439 (9) ◽  
pp. 2527-2541 ◽  
Author(s):  
Haizhou Song ◽  
Qiufen Wang ◽  
Lulu Tian
2017 ◽  
Vol 32 ◽  
pp. 447-453
Author(s):  
Qi Kong ◽  
Ligong Wang

In this paper, we prove two results about the signless Laplacian spectral radius $q(G)$ of a graph $G$ of order $n$ with maximum degree $\Delta$. Let $B_{n}=K_{2}+\overline{K_{n}}$ denote a book, i.e., the graph $B_{n}$ consists of $n$ triangles sharing an edge. The results are the following: (1) Let $1< k\leq l< \Delta < n$ and $G$ be a connected \{$B_{k+1},K_{2,l+1}$\}-free graph of order $n$ with maximum degree $\Delta$. Then $$\displaystyle q(G)\leq \frac{1}{4}[3\Delta+k-2l+1+\sqrt{(3\Delta+k-2l+1)^{2}+16l(\Delta+n-1)}$$ with equality if and only if $G$ is a strongly regular graph with parameters ($\Delta$, $k$, $l$). (2) Let $s\geq t\geq 3$, and let $G$ be a connected $K_{s,t}$-free graph of order $n$ $(n\geq s+t)$. Then $$q(G)\leq n+(s-t+1)^{1/t}n^{1-1/t}+(t-1)(n-1)^{1-3/t}+t-3.$$


2014 ◽  
Vol 06 (02) ◽  
pp. 1450029 ◽  
Author(s):  
YU-PEI HUANG ◽  
CHIH-WEN WENG

In a simple connected graph, the average 2-degree of a vertex is the average degree of its neighbors. With the average 2-degree sequence and the maximum degree ratio of adjacent vertices, we present a sharp upper bound of the spectral radius of the adjacency matrix of a graph, which improves a result in [Y. H. Chen, R. Y. Pan and X. D. Zhang, Two sharp upper bounds for the signless Laplacian spectral radius of graphs, Discrete Math. Algorithms Appl.3(2) (2011) 185–191].


10.37236/431 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Hongliang Lu

Let $r$ and $m$ be two integers such that $r\geq m$. Let $H$ be a graph with order $|H|$, size $e$ and maximum degree $r$ such that $2e\geq |H|r-m$. We find a best lower bound on spectral radius of graph $H$ in terms of $m$ and $r$. Let $G$ be a connected $r$-regular graph of order $|G|$ and $ k < r$ be an integer. Using the previous results, we find some best upper bounds (in terms of $r$ and $k$) on the third largest eigenvalue that is sufficient to guarantee that $G$ has a $k$-factor when $k|G|$ is even. Moreover, we find a best bound on the second largest eigenvalue that is sufficient to guarantee that $G$ is $k$-critical when $k|G|$ is odd. Our results extend the work of Cioabă, Gregory and Haemers [J. Combin. Theory Ser. B, 1999] who obtained such results for 1-factors.


Author(s):  
Haiyan Guo ◽  
Bo Zhou

For 0 ? ? ? 1, Nikiforov proposed to study the spectral properties of the family of matrices A?(G) = ?D(G)+(1 ? ?)A(G) of a graph G, where D(G) is the degree diagonal matrix and A(G) is the adjacency matrix of G. The ?-spectral radius of G is the largest eigenvalue of A?(G). For a graph with two pendant paths at a vertex or at two adjacent vertices, we prove results concerning the behavior of the ?-spectral radius under relocation of a pendant edge in a pendant path. We give upper bounds for the ?-spectral radius for unicyclic graphs G with maximum degree ? ? 2, connected irregular graphs with given maximum degree and some other graph parameters, and graphs with given domination number, respectively. We determine the unique tree with the second largest ?-spectral radius among trees, and the unique tree with the largest ?-spectral radius among trees with given diameter. We also determine the unique graphs so that the difference between the maximum degree and the ?-spectral radius is maximum among trees, unicyclic graphs and non-bipartite graphs, respectively.


Author(s):  
R. Khoeilar ◽  
A. Jahanbani ◽  
L. Shahbazi ◽  
J. Rodríguez

The [Formula: see text]-index of a graph [Formula: see text], denoted by [Formula: see text], is defined as the sum of weights [Formula: see text] over all edges [Formula: see text] of [Formula: see text], where [Formula: see text] denotes the degree of a vertex [Formula: see text]. In this paper, we give sharp upper bounds of the [Formula: see text]-index (forgotten topological index) over bicyclic graphs, in terms of the order and maximum degree.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


Author(s):  
Mehmet Akif Yetim

We provide upper bounds on the chromatic number of the square of graphs, which have vertex ordering characterizations. We prove that [Formula: see text] is [Formula: see text]-colorable when [Formula: see text] is a cocomparability graph, [Formula: see text]-colorable when [Formula: see text] is a strongly orderable graph and [Formula: see text]-colorable when [Formula: see text] is a dually chordal graph, where [Formula: see text] is the maximum degree and [Formula: see text] = max[Formula: see text] is the multiplicity of the graph [Formula: see text]. This improves the currently known upper bounds on the chromatic number of squares of graphs from these classes.


2019 ◽  
Vol 29 (02) ◽  
pp. 95-120 ◽  
Author(s):  
Prosenjit Bose ◽  
André van Renssen

We present improved upper bounds on the spanning ratio of constrained [Formula: see text]-graphs with at least 6 cones and constrained Yao-graphs with 5 or at least 7 cones. Given a set of points in the plane, a Yao-graph partitions the plane around each vertex into [Formula: see text] disjoint cones, each having aperture [Formula: see text], and adds an edge to the closest vertex in each cone. Constrained Yao-graphs have the additional property that no edge properly intersects any of the given line segment constraints. Constrained [Formula: see text]-graphs are similar to constrained Yao-graphs, but use a different method to determine the closest vertex. We present tight bounds on the spanning ratio of a large family of constrained [Formula: see text]-graphs. We show that constrained [Formula: see text]-graphs with [Formula: see text] ([Formula: see text] and integer) cones have a tight spanning ratio of [Formula: see text], where [Formula: see text] is [Formula: see text]. We also present improved upper bounds on the spanning ratio of the other families of constrained [Formula: see text]-graphs. These bounds match the current upper bounds in the unconstrained setting. We also show that constrained Yao-graphs with an even number of cones ([Formula: see text]) have spanning ratio at most [Formula: see text] and constrained Yao-graphs with an odd number of cones ([Formula: see text]) have spanning ratio at most [Formula: see text]. As is the case with constrained [Formula: see text]-graphs, these bounds match the current upper bounds in the unconstrained setting, which implies that like in the unconstrained setting using more cones can make the spanning ratio worse.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yajing Wang ◽  
Yubin Gao

Spectral graph theory plays an important role in engineering. Let G be a simple graph of order n with vertex set V=v1,v2,…,vn. For vi∈V, the degree of the vertex vi, denoted by di, is the number of the vertices adjacent to vi. The arithmetic-geometric adjacency matrix AagG of G is defined as the n×n matrix whose i,j entry is equal to di+dj/2didj if the vertices vi and vj are adjacent and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of G are the spectral radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some new upper bounds on arithmetic-geometric energy are obtained. In addition, we present the Nordhaus–Gaddum-type relations for arithmetic-geometric spectral radius and arithmetic-geometric energy and characterize corresponding extremal graphs.


Sign in / Sign up

Export Citation Format

Share Document