Induction of DNA strand breaks in the mussel (Mytilus trossulus) and clam (Protothaca staminea) following chronic field exposure to polycyclic aromatic hydrocarbons from the Exxon Valdez spill

2007 ◽  
Vol 54 (6) ◽  
pp. 726-732 ◽  
Author(s):  
Robert E. Thomas ◽  
Mandy Lindeberg ◽  
Patricia M. Harris ◽  
Stanley D. Rice
2020 ◽  
Vol 27 (13) ◽  
pp. 15498-15514 ◽  
Author(s):  
Raisa Turja ◽  
Steinar Sanni ◽  
Milda Stankevičiūtė ◽  
Laura Butrimavičienė ◽  
Marie-Hélène Devier ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Nadjet Benchalgo ◽  
François Gagné ◽  
Michel Fournier

The spill of liquid industrial waste from chemical and petrochemical industries in Mercier lagoons located 20 km south of Montreal, Quebec, caused a major groundwater contamination by industrial contaminants. The aim of this study was to investigate the toxic effects of Mercier groundwater, following 4 and 14 days of exposure to graded concentrations from three wells at increasing distances 1.2, 2.7 and 5.4 km from the source of contamination. Rainbow trout were examined for several biomarkers of defense [ethoxyresorufin <em>O</em>-deethylase (EROD) and gluthatione S-transferase (GST) activities] and those of tissue damage [lipid peroxidation (LPO) and DNA strand breaks]. The results showed that EROD activity was significantly enhanced in hepatic tissue at 1.2 and 5.4 km, whereas inhibition in activity was observed in group at 2.7 km. Therefore, GST activity was significantly increased at 3.1% concentration for the 2.7 km well. No change in LPO was observed. However, a significant induction of DNA strand breaks in liver was obtained at each distance. In conclusion, the data suggest that the release of these contaminants in groundwater leads to increased biotransformation for coplanar aromatic hydrocarbons and DNA damage in groundwater.


2019 ◽  
Vol 64 (1) ◽  
pp. 55-67
Author(s):  
Vlad Pӑnescu ◽  
◽  
Mihaela Cӑtӑlina Herghelegiu ◽  
Sorin Pop ◽  
Mircea Anton ◽  
...  

2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Sign in / Sign up

Export Citation Format

Share Document