Polycyclic Aromatic
Recently Published Documents


TOTAL DOCUMENTS

19661
(FIVE YEARS 5313)

H-INDEX

197
(FIVE YEARS 42)

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Alison K. Bauer ◽  
Katelyn J. Siegrist ◽  
Melanie Wolff ◽  
Lindsey Nield ◽  
Thomas Brüning ◽  
...  

The WHO classified air pollution as a human lung carcinogen and polycyclic aromatic hydrocarbons (PAHs) are components of both indoor (e.g., tobacco smoke and cookstoves) and outdoor (e.g., wildfires and industrial and vehicle emissions) air pollution, thus a human health concern. However, few studies have evaluated the adverse effects of low molecular weight (LMW) PAHs, the most abundant PAHs in the environment. We hypothesized that LMW PAHs combined with the carcinogenic PAH benzo[a]pyrene (B[a]P) act as co-carcinogens in human lung epithelial cell lines (BEAS-2B and A549). Therefore, in this paper, we evaluate several endpoints, such as micronuclei, gap junctional intercellular communication (GJIC) activity, cell cycle analysis, anti-BPDE-DNA adduct formation, and cytotoxicity after mixed exposures of LMW PAHs with B[a]P. The individual PAH doses used for each endpoint did not elicit cytotoxicity nor cell death and were relevant to human exposures. The addition of a binary mixture of LMW PAHs (fluoranthene and 1-methylanthracene) to B[a]P treated cells resulted in significant increases in micronuclei formation, dysregulation of GJIC, and changes in cell cycle as compared to cells treated with either B[a]P or the binary mixture alone. In addition, anti-BPDE-DNA adducts were significantly increased in human lung cells treated with B[a]P combined with the binary mixture of LMW PAHs as compared to cells treated with B[a]P alone, further supporting the increased co-carcinogenic potential by LMW PAHs. Collectively, these novel studies using LMW PAHs provide evidence of adverse pulmonary effects that should warrant further investigation.


Author(s):  
Pau Lian Peng ◽  
Lee Hoon Lim

AbstractThe monitoring of food contaminants is of interests to both food regulatory bodies and the consumers. This literature review covers polycyclic aromatic hydrocarbons (PAHs) with regard to their background, sources of exposures, and occurrence in food and environment as well as health hazards. Furthermore, analytical methods focusing on the analysis of PAHs in tea, coffee, milk, and alcoholic samples for the last 16 years are presented. Numerous experimental methods have been developed aiming to obtain better limits of detections (LODs) and percent recoveries as well as to reduce solvent consumption and laborious work. These include information such as the selected PAHs analyzed, food matrix of PAHs, methods of extraction, cleanup procedure, LOD, limits of quantitation (LOQ), and percent recovery. For the analysis of tea, coffee, milk, and alcoholic samples, a majority of the research papers focused on the 16 US Environmental Protection Agency PAHs, while PAH4, PAH8, and methylated PAHs were also of interests. Extraction methods range from the classic Soxhlet extraction and liquid–liquid extraction to newer methods such as QuEChERS, dispersive solid-phase microextraction, and magnetic solid-phase extraction. The cleanup methods involved mainly the use of column chromatography and SPE filled with either silica or Florisil adsorbents. Gas chromatography and liquid chromatography coupled with mass spectrometry or fluorescence detectors are the main analytical instruments used. A majority of the selected combined methods used are able to achieve LODs and percent recoveries in the ranges of 0.01–5 ug/kg and 70–110%, respectively, for the analysis of tea, coffee, milk, and alcoholic samples.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Lucie Drábová ◽  
Darina Dvořáková ◽  
Kateřina Urbancová ◽  
Tomáš Gramblička ◽  
Jana Hajšlová ◽  
...  

Interference of residual lipids is a very common problem in ultratrace analysis of contaminants in fatty matrices. Therefore, quick and effective clean-up techniques applicable to multiple groups of analytes are much needed. Cartridge and dispersive solid-phase extraction (SPE and dSPE) are often used for this purpose. In this context, we evaluated the lipid clean-up efficiency and performance of four commonly used sorbents—silica, C18, Z-Sep, and EMR-lipid—for the determination of organic pollutants in fatty fish samples (10%) extracted using ethyl acetate or the QuEChERS method. Namely, 17 polychlorinated biphenyls (PCBs), 22 organochlorine pesticides (OCPs), 13 brominated flame retardants (BFRs), 19 per- and polyfluoroalkyl substances (PFAS), and 16 polycyclic aromatic hydrocarbons (PAHs) were determined in this study. The clean-up efficiency was evaluated by direct analysis in real time coupled with time-of-flight mass spectrometry (DART-HRMS). The triacylglycerols (TAGs) content in the purified extracts were significantly reduced. The EMR-lipid sorbent was the most efficient of the dSPE sorbents used for the determination of POPs and PAHs in this study. The recoveries of the POPs and PAHs obtained by the validated QuEChERS method followed by the dSPE EMR-lipid sorbent ranged between 59 and 120%, with repeatabilities ranging between 2 and 23% and LOQs ranging between 0.02 and 1.50 µg·kg−1.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
M. Nowakowski ◽  
I. Rykowska ◽  
R. Wolski ◽  
P. Andrzejewski

AbstractThe aim of this paper is the presentation of the current state-of-the-art about the determination of polycyclic aromatic hydrocarbons (PAHs) and their oxidized forms originating from Suspended Particulate Matter (SPM) samples. The influence of SPM on health is twofold. SPM, as composed of small particles, is dangerous for the respiratory system. Additionally, SPM is a carrier of many hazardous compounds, particularly PAHs. Recently, several researches focus on the derivatives of PAHs, particularly nitro-, oxy- and hydroxy-PAHs, which are more dangerous than the parent PAHs. Both gas and high-performance liquid chromatography with various detection techniques are used to analyze both PAHs and their oxidized forms. Due to the appearance of these compounds in the environment, at a very low level, an analyte concentration step has to be applied prior to analysis. If GC and HPLC techniques are chiefly used as analytical tools for these analyses, the spectrum of analyte concentration procedures is very broad. Many analyte concentration techniques are proposed: from classic liquid-solid extractions, including Soxhlet technique, pressurized liquid extraction (ASE) or microwave oven (MWE) and sonic supported extraction to SPE techniques applications. However, one should remember that PAH determination methods are tools for solving the main problem, i.e., the evaluation the health hazard connected to the presence of SPM in air. Thus, the main drawback of several papers found in this review, i.e., the lack of information concerning limit of detection (LOD) of these methods makes their applicability very limited.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 175
Author(s):  
Anna Onopiuk ◽  
Klaudia Kołodziejczak ◽  
Monika Marcinkowska-Lesiak ◽  
Iwona Wojtasik-Kalinowska ◽  
Arkadiusz Szpicer ◽  
...  

Marinating is one of the most common methods of pre-processing meat. Appropriate selection of marinade ingredients can influence the physicochemical properties of the meat and can reduce the level of polycyclic aromatic hydrocarbons (PAHs) in the final product. The effects of the inclusion of natural plant extracts such as bay leaf (BL), black pepper (BP), turmeric (TU), jalapeno pepper (JP) and tamarind paste (TA) in marinades on the physicochemical properties of grilled pork neck were studied. The addition of spice extracts to marinades increased the proportion of colour components L* and b*. The use of TU, TA, JP, MX and C marinades lowered the hardness and pH of the meat. The highest phenolic compound levels were observed in the case of the mixture of all extracts (MX) and JP marinades, and the highest total antioxidant capacity was exhibited by the BL and MX marinades. The highest PAH content was recorded in the CON marinade (Σ12PAH 98.48 ± 0.81 µg/kg) and the lowest in the JP marinade (4.76 ± 0.08 µg/kg), which had the strongest, statistically significant reducing effect (95% reduction) on PAH levels. Analysis of correlation coefficients showed a relationship between the total antioxidant capacity of the marinades and the PAH content in grilled pork.


Sign in / Sign up

Export Citation Format

Share Document