Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation

2009 ◽  
Vol 117 (2-3) ◽  
pp. 522-527 ◽  
Author(s):  
Liang Zhou ◽  
Jian Deng ◽  
Yubao Zhao ◽  
Wanbing Liu ◽  
Lin An ◽  
...  
2020 ◽  
Vol 35 (3) ◽  
pp. 312-320
Author(s):  
Zuowei Zhang ◽  
Hongshun Hao ◽  
Shanshan Jin ◽  
Yunxia Hou ◽  
Hongman Hou ◽  
...  

Abstract


2020 ◽  
Vol 46 (15) ◽  
pp. 24744-24752 ◽  
Author(s):  
Weichao Li ◽  
Linkun Xie ◽  
Liexing Zhou ◽  
Josias Ochoa-Lozano ◽  
Chen Li ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1332
Author(s):  
Duc Quang Dao ◽  
Thi Kim Anh Nguyen ◽  
Thanh-Truc Pham ◽  
Eun Woo Shin

Co-doped NiTiO3/g-C3N4 composite photocatalysts were prepared by a modified Pechini method to improve their photocatalytic activity toward methylene blue photodegradation under visible light irradiation. The combination of Co-doped NiTiO3 and g-C3N4 and Co-doping into the NiTiO3 lattice synergistically enhanced the photocatalytic performance of the composite photocatalysts. X-ray photoelectron spectroscopy results for the Co-doped NiTiO3/g-C3N4 composite photocatalysts confirmed Ti-N linkages between the Co-doped NiTiO3 and g-C3N4. In addition, characteristic X-ray diffraction peaks for the NiTiO3 lattice structure clearly indicated substitution of Co into the NiTiO3 lattice structure. The composite structure and Co-doping of the C-x composite photocatalysts (x wt % Co-doped NiTiO3/g-C3N4) not only decreased the emission intensity of the photoluminescence spectra but also the semicircle radius of the Nyquist plot in electrochemical impedance spectroscopy, giving the highest kapp value (7.15 × 10−3 min−1) for the C-1 composite photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document