Catalysts
Latest Publications


TOTAL DOCUMENTS

5709
(FIVE YEARS 4143)

H-INDEX

52
(FIVE YEARS 22)

Published By Mdpi Ag

2073-4344

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 101
Author(s):  
Sandra Ardevines ◽  
Eugenia Marqués-López ◽  
Raquel P. Herrera

Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and sustainable alternative since List and MacMillan pioneering contributions were published in 2000. These works established the term asymmetric organocatalysis to label this area of research, which has grown exponentially over the last two decades. Since then, the scientific community has attended to the discovery of a plethora of organic reactions and transformations carried out with excellent results in terms of both reactivity and enantioselectivity. Looking back to earlier times, we can find in the literature a few examples where small organic molecules and some natural products could act as effective catalysts. However, with the birth of this type of catalysis, new chemical architectures based on amines, thioureas, squaramides, cinchona alkaloids, quaternary ammonium salts, carbenes, guanidines and phosphoric acids, among many others, have been developed. These organocatalysts have provided a broad range of activation modes that allow privileged interactions between catalysts and substrates for the preparation of compounds with high added value in an enantioselective way. Here, we briefly cover the history of this chemistry, from our point of view, including our beginnings, how the field has evolved during these years of research, and the road ahead.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Paweł Adamski ◽  
Wojciech Czerwonko ◽  
Dariusz Moszyński

The application of cobalt molybdenum nitrides as ammonia synthesis catalysts requires further development of the optimal promoter system, which enhances not only the activity but also the stability of the catalysts. To do so, elucidating the influence of the addition of alkali metals on the structural properties of the catalysts is essential. In this study, potassium-promoted cobalt molybdenum nitrides were synthesized by impregnation of the precursor CoMoO4·3/4H2O with aqueous KNO3 solution followed by ammonolysis. The catalysts were characterized with the use of XRD and BET methods, under two conditions: as obtained and after the thermal stability test. The catalytic activity in the synthesis of ammonia was examined at 450 °C, under 10 MPa. The thermal stability test was carried out by heating at 650 °C in the same apparatus. As a result of ammonolysis, mixtures of two phases: Co3Mo3N and Co2Mo3N were obtained. The phase concentrations were affected by potassium admixture. The catalytical activity increased for the most active catalyst by approximately 50% compared to non-promoted cobalt molybdenum nitrides. The thermal stability test resulted in a loss of activity, on average, of 30%. Deactivation was caused by the collapse of the porous structure, which is attributed to the conversion of the Co2Mo3N phase to the Co3Mo3N phase.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Htoo Nay Wunn ◽  
Shinichi Motoda ◽  
Motoaki Morita

One of the effective ways of utilizing marine environments is to generate energy, power, and hydrogen via the effect of photocatalysts in the seawater. Since the ocean is vast, we are able to use its large area, but the power generation system must be of low cost and have high durability against both force and corrosion. In order to meet those requirements, this study focuses on the fabrication of a novel marine wet solar cell composed of a titanium dioxide photoanode and a copper oxide photocathode. These electrodes were deposited on type 329J4L stainless steel, which possesses relative durability in marine environments. This study focuses on the characterization of the photocatalytic properties of electrodes in seawater. Low-cost manufacturing processes of screen-printing and vacuum vapor deposition were applied to produce the titanium dioxide and copper oxides electrodes, respectively. We investigated the photopotential of the electrodes, along with the electrochemical properties and cell voltage properties of the cell. X-ray diffraction spectroscopy (XRD) of the copper oxides electrode was analyzed in association with the loss of photocatalytic effect in the copper oxides electrode. Although the conversion efficiency of the wet cell was less than 1%, it showed promising potential for use in marine environments with low-cost production. Electrochemical impedance spectroscopy (EIS) of the cell was also conducted, from which impedance values regarding the electrical properties of electrodes and their interfaces of charge-transfer processes were obtained. This study focuses on the early phase of the marine wet solar cell, which should be further studied for long-term stability and in actual marine environmental applications.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Chu-Chin Hsieh ◽  
Jyong-Sian Tsai ◽  
Hwo-Shuenn Sheu ◽  
Jen-Ray Chang

V2O5/NaY-SiO2 adsorbents were prepared by soaking up vanadium oxalate precursors into pellet NaY-SiO2. The NaY-SiO2 supports were prepared from NaY-SiO2 dough followed by extrusion and calcination at 450 °C. Ethanol was used as a model adsorbate to test the performance of the adsorbents. The regeneration efficacy, defined as the ratio of the adsorption capacity of a regenerated adsorbent to that of the fresh adsorbent, was investigated through the dynamics of fixed-bed adsorption (breakthrough curve). TPO, DSC, and FT-IR were used to characterize carbonaceous species on the adsorbents; meanwhile, synchrotron XRPD, XAS, and the N2 isotherm were used to characterize the zeolite, vanadia structure, and surface area, respectively. The results indicated that in low temperature (300 °C) regeneration, adsorption sites covered by alkylated aromatic coke formed during regeneration, causing adsorbent deactivation. In contrast, during regeneration at a high temperature (450 °C), the deactivation was caused by the destruction of the NaY framework concomitant with channel blockage, as suggested by the BET surface area combined with Rietvelt XRPD refinement results. In addition, the appearance of V-O-V contribution in the EXAFS spectra indicated the aggregation of isolated VO4, which led to a decrease in the combustion rate of the carbonaceous species deposited on the adsorbents. For regeneration at 350 and 400 °C, only trace coke formation and minor structural destruction were observed. Long-term life tests indicated that regeneration at 400 °C presents a higher maintenance of stability.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Gajanan Y. Shinde ◽  
Abhishek S. Mote ◽  
Manoj B. Gawande

Constantly increasing hydrocarbon fuel combustion along with high levels of carbon dioxide emissions has given rise to a global energy crisis and environmental alterations. Photocatalysis is an effective technique for addressing this energy and environmental crisis. Clean and renewable solar energy is a very favourable path for photocatalytic CO2 reduction to value-added products to tackle problems of energy and the environment. The synthesis of various products such as CH4, CH3OH, CO, EtOH, etc., has been expanded through the photocatalytic reduction of CO2. Among these products, methanol is one of the most important and highly versatile chemicals widely used in industry and in day-to-day life. This review emphasizes the recent progress of photocatalytic CO2 hydrogenation to CH3OH. In particular, Metal organic frameworks (MOFs), mixed-metal oxide, carbon, TiO2 and plasmonic-based nanomaterials are discussed for the photocatalytic reduction of CO2 to methanol. Finally, a summary and perspectives on this emerging field are provided.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Fernanda Guimarães Torres ◽  
Filipe Simões Teodoro ◽  
Leandro Vinícius Alves Gurgel ◽  
Flavien Bourdreux ◽  
Olfa Zayene ◽  
...  

This work describes the application of raw and chemically modified cellulose and sugarcane bagasse for ipso-hydroxylation of aryl boronic acids in environmentally friendly reaction conditions. The catalytic efficiency of five support-[Cu] materials was compared in forming phenols from aryl boronic acids. Our investigation highlights that the CEDA-[Cu] material (6-deoxy-6-aminoethyleneamino cellulose loaded with Cu) leads to the best results under very mild reaction conditions. The optimized catalytic sequence, allowing a facile transformation of boronic acids to phenols, required the mandatory and joint presence of the support, Cu2O, and KOH at room temperature. CEDA-[Cu] was characterized using 13C solid-state NMR, ICP, and FTIR. The use of CEDA-[Cu] accounts for the efficacious synthesis of variously substituted phenol derivatives and presents very good recyclability after five catalytic cycles.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Jan Drönner ◽  
Peter Hausoul ◽  
Regina Palkovits ◽  
Matthias Eisenacher

The oxidation of cumene and following cleavage of cumene hydroperoxide (CHP) with sulfuric acid (Hock rearrangement) is still, by far, the dominant synthetic route to produce phenol. In 2020, the global phenol market reached a value of 23.3 billion US$ with a projected compound annual growth rate of 3.4% for 2020–2025. From ecological and economical viewpoints, the key step of this process is the cleavage of CHP. One sought-after way to likewise reduce energy consumption and waste production of the process is to substitute sulfuric acid with heterogeneous catalysts. Different types of zeolites, silicon-based clays, heteropoly acids, and ion exchange resins have been investigated and tested in various studies. For every type of these solid acid catalysts, several materials were found that show high yield and selectivity to phenol. In this mini-review, first a brief introduction and overview on the Hock process is given. Next, the mechanism, kinetics, and safety aspects are summarized and discussed. Following, the different types of heterogeneous catalysts and their performance as catalyst in the Hock process are illustrated. Finally, the different approaches to substitute sulfuric acid in the synthetic route to produce phenol are briefly concluded and a short outlook is given.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Galina Y. Nazarova ◽  
Elena N. Ivashkina ◽  
Emiliya D. Ivanchina ◽  
Maria Y. Mezhova

Changes in the quality of the feedstocks generated by involving various petroleum fractions in catalytic cracking significantly affect catalyst deactivation, which stems from coke formed on the catalyst surface. By conducting experimental studies on feedstocks and catalysts, as well as using industrial data, we studied how the content of saturates, aromatics and resins (SAR) in feedstock and the main process variables, including temperature, consumptions of the feedstock, catalyst and slops, influence the formation of catalytic coke. We also determined catalyst deactivation patterns using TG-DTA, N2 adsorption and TPD, which were further used as a basis for a kinetic model of catalytic cracking. This model helps predict the changes in reactions rates caused by coke formation and, also, evaluates quantitatively how group characteristics of the feedstock, the catalyst-to-oil ratio and slop flow influence the coke content on the catalyst and the degree of catalyst deactivation. We defined that a total loss of acidity changes from 8.6 to 30.4 wt% for spent catalysts, and this depends on SAR content in feedstock and process variables. The results show that despite enriching the feedstock by saturates, the highest coke yields (4.6–5.2 wt%) may be produced due to the high content of resins (2.1–3.5 wt%).


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Yonis Fornazier Filho ◽  
Ana Caroliny Carvalho da Cruz ◽  
Rolando Pedicini ◽  
José Ricardo Cezar Salgado ◽  
Rodrigo Vieira Rodrigues ◽  
...  

An efficient ethanol oxidation reaction (EOR) is required to enhance energy production in alcohol-based fuel cells. The use of bimetallic catalysts promises decreasing reliance on platinum group metal (PGM) electrocatalysts by minimizing the use of these expensive materials in the overall electrocatalyst composition. In this article, an alternative method of bimetallic electrocatalyst synthesis based on the use of polymeric precursors is explored. PdAg/C electrocatalysts were synthesized by thermal decomposition of polymeric precursors and used as the anode electrocatalyst for EOR. Different compositions, including pristine Pd/C and Ag/C, as well as bimetallic Pd80Ag20/C, and Pd60Ag40/C electrocatalysts, were evaluated. Synthesized catalysts were characterized, and electrochemical activity evaluated. X-ray diffraction showed a notable change at diffraction peak values for Pd80Ag20/C and Pd60Ag40/C electrocatalysts, suggesting alloying (solid solution) and smaller crystallite sizes for Pd60Ag40/C. In a thermogravimetric analysis, the electrocatalyst Pd60Ag40/C presented changes in the profile of the curves compared to the other electrocatalysts. In the cyclic voltammetry results for EOR in alkaline medium, Pd60Ag40/C presented a more negative onset potential, a higher current density at the oxidation peak, and a larger electrically active area. Chronoamperometry tests indicated a lower poisoning rate for Pd60Ag40/C, a fact also observed in the CO-stripping voltammetry analysis due to its low onset potential. As the best performing electrocatalyst, Pd60Ag40/C has a lower mass of Pd (a noble and expensive metal) in its composition. It can be inferred that this bimetallic composition can contribute to decreasing the amount of Pd required while increasing the fuel cell performance and expected life. PdAg-type electrocatalysts can provide an economically feasible alternative to pure PGM-electrocatalysts for use as the anode in EOR in fuel cells.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
George Pchelarov ◽  
Dzhamal Uzun ◽  
Sasho Vassilev ◽  
Elena Razkazova-Velkova ◽  
Ognian Dimitrov ◽  
...  

Described herewith is an electrochemical method to decontaminate sulphur compounds. Studies were carried out of sulphites (SO32−) oxidation on a range of anode catalysts. The electrocatalysts were characterized by scanning electron microscopy, XRD, XPS and BET. Polarization curves were recorded of electrodes incorporating lyophilized higher fullerenes and manganese oxides. The experiments showed that lyophilized higher fullerenes and C60/C70 fullerene catalysts in conjunction with manganese oxides electrochemically convert sulphites (SO32−) to sulphates (SO42−). The oxidation products do not poison the electrodes. The XPS analysis shows that the catalysts incorporating DWCNTs, MWCNTs and higher fullerenes have a higher concentration of sp3C carbon bonding leading to higher catalytic activity. It is ascertained that higher fullerenes play a major role in the synthesis of more effective catalysts. The electrodes built by incorporating lyophilized catalysts containing higher fullerenes and manganese oxides are shown as most promising in the effective electrochemical decontamination of industrial and natural wastewaters.


Sign in / Sign up

Export Citation Format

Share Document