Domain-wall crosses and propellers in binary Bose–Einstein condensates

2005 ◽  
Vol 69 (3-4) ◽  
pp. 400-412 ◽  
Author(s):  
B.A. Malomed ◽  
H.E. Nistazakis ◽  
P.G. Kevrekidis ◽  
D.J. Frantzeskakis
Keyword(s):  
2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Maria Arazo ◽  
Montserrat Guilleumas ◽  
Ricardo Mayol ◽  
Michele Modugno

2012 ◽  
Vol 171 (1-2) ◽  
pp. 156-156
Author(s):  
Hiromitsu Takeuchi ◽  
Kenichi Kasamatsu ◽  
Muneto Nitta ◽  
Makoto Tsubota

2010 ◽  
Vol 81 (1) ◽  
Author(s):  
Zai-Dong Li ◽  
Qiu-Yan Li ◽  
Peng-Bin He ◽  
J. -Q. Liang ◽  
W. M. Liu ◽  
...  

2004 ◽  
Vol 70 (4) ◽  
Author(s):  
Boris A. Malomed ◽  
H. E. Nistazakis ◽  
D. J. Frantzeskakis ◽  
P. G. Kevrekidis
Keyword(s):  

2016 ◽  
pp. 126-131
Author(s):  
Peter Pikhitsa ◽  
Peter Pikhitsa

A Bose-Einstein condensate of bosons with repulsion, described by the Gross-Pitaevskii equation and restricted by an impenetrable “hard wall” (either rigid or flexible) which is intended to suppress the “snake instability” inherent for dark solitons, is considered. The Bogoliubov-de Gennes equations to find the spectra of gapless Bogoliubov excitations localized near the “domain wall” and therefore split from the bulk excitation spectrum of the Bose-Einstein condensate are solved. The “domain wall” may model either the surface of liquid helium or of a strongly trapped Bose-Einstein condensate. The dispersion relations for the surface excitations are found for all wavenumbers along the surface up to the ”free-particle” behavior , the latter was shown to be bound to the “hard wall” with some “universal” energy .


2012 ◽  
Vol 109 (24) ◽  
Author(s):  
Hiromitsu Takeuchi ◽  
Kenichi Kasamatsu ◽  
Makoto Tsubota ◽  
Muneto Nitta

Sign in / Sign up

Export Citation Format

Share Document