optical lattice
Recently Published Documents


TOTAL DOCUMENTS

2129
(FIVE YEARS 280)

H-INDEX

103
(FIVE YEARS 9)

Author(s):  
Yusuke Hisai ◽  
Yoshiki Nishida ◽  
Hiroshi Miyazawa ◽  
Takumi Kobayashi ◽  
Feng-Lei HONG ◽  
...  

Abstract We demonstrate a second harmonic generation (SHG) of 116 mW at 461 nm in a periodically poled lithium niobate waveguide when the power of the 922-nm fundamental light is coupled into the waveguide was 350 mW. The waveguide is 12.5 μm wide, 12.0 μm thick, 22 mm long, and has a 1-mm-long slab window at the output facet of the waveguide. The temperature acceptance bandwidth of the phase-matching curve of the SHG is approximately 0.5 °C. The SHG system demonstrates good beam quality and is reliable for cold atom experiments, including research on optical lattice clocks.


2022 ◽  
Vol 20 (2) ◽  
pp. 020201
Author(s):  
Dianqiang Su ◽  
Xiateng Qin ◽  
Yuan Jiang ◽  
Kaidi Jin ◽  
Zhonghua Ji ◽  
...  
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Barun Halder ◽  
Suranjana Ghosh ◽  
Pradosh Basu ◽  
Jayanta Bera ◽  
Boris Malomed ◽  
...  

We address dynamics of Bose-Einstein condensates (BECs) loaded into a one-dimensional four-color optical lattice (FOL) potential with commensurate wavelengths and tunable intensities. This configuration lends system-specific symmetry properties. The analysis identifies specific multi-parameter forms of the FOL potential which admits exact solitary-wave solutions. This newly found class of potentials includes more particular species, such as frustrated double-well superlattices, and bichromatic and three-color lattices, which are subject to respective symmetry constraints. Our exact solutions provide options for controllable positioning of density maxima of the localized patterns, and tunable Anderson-like localization in the frustrated potential. A numerical analysis is performed to establish dynamical stability and structural stability of the obtained solutions, which makes them relevant for experimental realization. The newly found solutions offer applications to the design of schemes for quantum simulations and processing quantum information.


Author(s):  
Hidetsugu Sakaguchi ◽  
Fumihide Hirano ◽  
Boris A Malomed

Abstract It is known that the interplay of the spin-orbit-coupling (SOC) and mean-field self-attraction creates stable two-dimensional (2D) solitons (ground states) in spinor Bose-Einstein condensates. However, SOC destroys the system's Galilean invariance, therefore moving solitons exist only in a narrow interval of velocities, outside of which the solitons suffer delocalization. We demonstrate that the application of a relatively weak moving optical lattice (OL), with the 2D or quasi-1D structure, makes it possible to greatly expand the velocity interval for stable motion of the solitons. The stability domain in the system's parameter space is identified by means of numerical methods. In particular, the quasi-1D OL produces a stronger stabilizing effect than its full 2D counterpart. Some features of the domain are explained analytically.


2021 ◽  
Vol 127 (26) ◽  
Author(s):  
Yewei Wu ◽  
Justin J. Burau ◽  
Kameron Mehling ◽  
Jun Ye ◽  
Shiqian Ding

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
K. J. M. Schouten ◽  
V. Cheianov

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Ryan Cardman ◽  
Xiaoxuan Han ◽  
Jamie L. MacLennan ◽  
Alisher Duspayev ◽  
Georg Raithel

Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 554
Author(s):  
Gary McCormack ◽  
Rejish Nath ◽  
Weibin Li

We study the chaos and hyperchaos of Rydberg-dressed Bose–Einstein condensates (BECs) in a one-dimensional optical lattice. Due to the long-range, soft-core interaction between the dressed atoms, the dynamics of the BECs are described by the extended Bose-Hubbard model. In the mean-field regime, we analyze the dynamical stability of the BEC by focusing on the ground state and localized state configurations. Lyapunov exponents of the two configurations are calculated by varying the soft-core interaction strength, potential bias, and length of the lattice. Both configurations can have multiple positive Lyapunov exponents, exhibiting hyperchaotic dynamics. We show the dependence of the number of the positive Lyapunov exponents and the largest Lyapunov exponent on the length of the optical lattice. The largest Lyapunov exponent is directly proportional to areas of phase space encompassed by the associated Poincaré sections. We demonstrate that linear and hysteresis quenches of the lattice potential and the dressed interaction lead to distinct dynamics due to the chaos and hyperchaos. Our work is relevant to current research on chaos as well as collective and emergent nonlinear dynamics of BECs with long-range interactions.


Sign in / Sign up

Export Citation Format

Share Document