Multilayered MoS2/C nanospheres as high performance additives to lubricating oils

Author(s):  
Volodymyr Kotsyubynsky ◽  
Lyudmyla Shyyko ◽  
Thaer Shihab ◽  
Pavlo Prysyazhnyuk ◽  
Victor Aulin ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (32) ◽  
pp. 20049-20056 ◽  
Author(s):  
Young-Kyu Han ◽  
Jaeik Yoo ◽  
Taeeun Yim

We presented a computational screening protocol for the efficient development of cathode-electrolyte interphase (CEI)-forming additive materialsviathe first-principles calculations.


2018 ◽  
Vol 765 ◽  
pp. 106-112
Author(s):  
Yin Bo He ◽  
Guan Cheng Jiang ◽  
Wu Ge Cui

In this study, we report salt-responsive amphoteric terpolymers prepared by copolymerization of acrylamide (AM), 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyl trimethylammonium chloride (ATC), and their use as rheology and fluid loss modifiers in water-based drilling fluid (WDF). The dependence of viscosity and turbidity on NaCl concentration indicates the salt-responsiveness of terpolymers, which results from salt-induced polymer conformation changes. In the presence of large quantities of NaCl, comparing with BT/polyanioins solution, bentonite (BT)/terpolymer solution has better shear thinning and thixotropic performance as well as lower fluid loss. Morphology shows that BT/terpolymer solution with NaCl creates high-quality filtrate cake which is compact and thin. A salt-resistant WDF prepared with terpolymers is evaluated and compared with polyanioinc WDF and polyanionic sulfonated WDF. The salt-resistant WDF possesses more favorable rheology, lower fluid loss and stronger tolerance for temperature, suggesting the potential use of AM/AMPS/ATC terpolymers as high-performance additives for salt-resistant WDFs.


Sign in / Sign up

Export Citation Format

Share Document