Loss of LCAT activity in the golden Syrian hamster elicits pro-atherogenic dyslipidemia and enhanced atherosclerosis

Metabolism ◽  
2018 ◽  
Vol 83 ◽  
pp. 245-255 ◽  
Author(s):  
Zhao Dong ◽  
Haozhe Shi ◽  
Mingming Zhao ◽  
Xin Zhang ◽  
Wei Huang ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A613-A613
Author(s):  
T IKEGAMI ◽  
P LATHAM ◽  
K KOBAYASHI ◽  
K ARIMORI ◽  
B BOUSCAREL

1999 ◽  
Vol 140 (6) ◽  
pp. 1100-1104 ◽  
Author(s):  
Mezick ◽  
Gendimenico ◽  
Liebel ◽  
Stenn

1999 ◽  
Vol 82 (5) ◽  
pp. 401-409 ◽  
Author(s):  
E. Heather Mangiapane ◽  
Martina A. McAteer ◽  
G. Martin Benson ◽  
David A. White ◽  
Andrew M. Salter

The Golden Syrian hamster (Mesocricetus auratus) has been shown to be a useful model of both human lipoprotein metabolism and the development of atherosclerosis. We report the effects of dietary lipids on the progression and regression of atherosclerosis in this model. In the first study, hamsters fed on coconut oil (150 g/kg diet) and cholesterol (30 g/kg diet) developed lipid-rich lesions in the ascending aorta (0·28 (sd 0·14) mm2) and aortic arch (0·01 (sd 0·01) mm2) after 4 weeks that continued to progress over the next 8 weeks (0·75 (sd 0·41) mm2 and 0·12 (sd 0·11) mm2 for the ascending aorta and aortic arch respectively). Removal of cholesterol from the diet halted this progression. Furthermore, in animals fed on olive oil in the absence of added cholesterol, plasma LDL-cholesterol concentrations were lower (P < 0·05) and the extent of atherosclerotic lesions was reduced (P < 0·001 for both regions of the aorta) compared with animals fed on coconut oil (with no added cholesterol). In a second study, animals were fed on the atherogenic diet for 10 weeks, transferred to diets containing either coconut oil (150 g/kg diet) or olive oil (150 g/kg diet) without added cholesterol and monitored for up to 16 weeks. In the ascending aorta, lesion size doubled in animals fed on coconut oil but stabilized in those fed on olive oil. In the aortic arch, lesion size decreased linearly (P < 0·05, P < 0·001 for coconut oil and olive oil respectively) with the greatest reduction being seen in the olive-oil-fed animals (P < 0·05). Again, progression and regression of atherosclerosis appeared to reflect the relative concentrations of LDL-cholesterol and HDL-cholesterol in the plasma. We conclude that the male Golden Syrian hamster represents a useful model of dietary induced regression as well as progression of atherosclerosis.


1978 ◽  
Vol 12 (4) ◽  
pp. 207-211 ◽  
Author(s):  
E. A. E. Van Marck ◽  
W. Jacob ◽  
A. M. Deelder ◽  
P. L. J. Gigase

Changes in apparently healthy hamsters, consistent with proteinuria, are reported, but no IgG deposits or amyloid in the glomeruli were detected. Further investigation is required into the significance and the aetiology of these, as yet, obscure alterations.


2022 ◽  
Author(s):  
Shuofeng Yuan ◽  
Zi-Wei Ye ◽  
Ronghui Liang ◽  
Kaiming Tang ◽  
Anna Jinxia Zhang ◽  
...  

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kathrin Becker ◽  
Georg Beythien ◽  
Nicole de Buhr ◽  
Stephanie Stanelle-Bertram ◽  
Berfin Tuku ◽  
...  

Neutrophil extracellular traps (NETs) have been identified as one pathogenetic trigger in severe COVID-19 cases and therefore well-described animal models to understand the influence of NETs in COVID-19 pathogenesis are needed. SARS-CoV-2 infection causes infection and interstitial pneumonia of varying severity in humans and COVID-19 models. Pulmonary as well as peripheral vascular lesions represent a severe, sometimes fatal, disease complication of unknown pathogenesis in COVID-19 patients. Furthermore, neutrophil extracellular traps (NETs), which are known to contribute to vessel inflammation or endothelial damage, have also been shown as potential driver of COVID-19 in humans. Though most studies in animal models describe the pulmonary lesions characterized by interstitial inflammation, type II pneumocyte hyperplasia, edema, fibrin formation and infiltration of macrophages and neutrophils, detailed pathological description of vascular lesions or NETs in COVID-19 animal models are lacking so far. Here we report different types of pulmonary vascular lesions in the golden Syrian hamster model of COVID-19. Vascular lesions included endothelialitis and vasculitis at 3 and 6 days post infection (dpi), and were almost nearly resolved at 14 dpi. Importantly, virus antigen was present in pulmonary lesions, but lacking in vascular alterations. In good correlation to these data, NETs were detected in the lungs of infected animals at 3 and 6 dpi. Hence, the Syrian hamster seems to represent a useful model to further investigate the role of vascular lesions and NETs in COVID-19 pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document