golden syrian hamster
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Zhaochun Chen ◽  
Peng Zhang ◽  
Yumiko Matsuoka ◽  
Yaroslav Tsybovsky ◽  
Kamille West ◽  
...  

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity1. This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies1,2. Thus, there is an urgent need for effective therapeutic and preventive measures with a broad spectrum of action, especially against variants with an unparalleled number of mutations such as the recently emerged Omicron variant, which is rapidly spreading across the globe3. Here, we used combinatorial antibody phage-display libraries from convalescent COVID-19 patients to generate monoclonal antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein with ultrapotent neutralizing activity. One such antibody, NE12, neutralizes an early isolate, the WA-1 strain, as well as the Alpha and Delta variants with half-maximal inhibitory concentrations at picomolar level. A second antibody, NA8, has an unusual breadth of neutralization, with picomolar activity against both the Beta and Omicron variants. The prophylactic and therapeutic efficacy of NE12 and NA8 was confirmed in preclinical studies in the golden Syrian hamster model. Analysis by cryo-EM illustrated the structural basis for the neutralization properties of NE12 and NA8. Potent and broadly neutralizing antibodies against conserved regions of the SARS-CoV-2 spike protein may play a key role against future variants of concern that evade immune control.


2022 ◽  
Author(s):  
Shuofeng Yuan ◽  
Zi-Wei Ye ◽  
Ronghui Liang ◽  
Kaiming Tang ◽  
Anna Jinxia Zhang ◽  
...  

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Zaigham Abbas Rizvi ◽  
Rajdeep Dalal ◽  
Srikanth Sadhu ◽  
Akshay Binayke ◽  
Jyotsna Dandotiya ◽  
...  

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in the Golden Syrian hamster causes lung pathology that resembles human coronavirus disease (COVID-19). However, extra-pulmonary pathologies associated with SARS-CoV-2 infection and post COVID sequelae remain to be understood. Here we show, using a hamster model, that the early phase of SARS-CoV-2 infection leads to an acute inflammatory response and lung pathologies, while the late phase of infection causes cardiovascular complications (CVC) characterized by ventricular wall thickening associated with increased ventricular mass/ body mass ratio and interstitial coronary fibrosis. Molecular profiling further substantiated our findings of CVC, as SARS-CoV-2-infected hamsters showed elevated levels of serum cardiac Troponin-I (cTnI), cholesterol, low-density lipoprotein and long-chain fatty acid triglycerides. Serum metabolomics profiling of SARS-CoV-2-infected hamsters identified N-acetylneuraminate, a functional metabolite found to be associated with CVC, as a metabolic marker was found to be common between SARS-CoV-2-infected hamsters and COVID-19 patients. Together, we propose hamsters as a suitable animal model to study post-COVID sequelae associated with CVC which could be extended to therapeutic interventions.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Lisa H. Tostanoski ◽  
Abishek Chandrashekar ◽  
Shivani Patel ◽  
Jingyou Yu ◽  
Catherine Jacob-Dolan ◽  
...  

AbstractSARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.


2022 ◽  
Author(s):  
Santhamani Ramasamy ◽  
Afsal Kolloli ◽  
Ranjeet Kumar ◽  
Seema Hussain ◽  
Patricia Soteropoulos ◽  
...  

The pathogenesis of SARS-CoV-2 in the context of a specific immunological niche is not fully understood. Here, we used a golden Syrian hamster model to systematically evaluate the kinetics of host response to SARS-CoV-2 infection, following disease pathology, viral loads, antibody responses, and inflammatory cytokine expression in multiple organs. The kinetics of SARS-CoV-2 pathogenesis and genomewide lung transcriptome was also compared between immunocompetent and immunocompromised hamsters. We observed that the body weight loss was proportional to the SARS-CoV-2 infectious dose and lasted for a short time only in immunocompetent hamsters. Body weight loss was more prominent and prolonged in infected immunocompromised hamsters. While the kinetics of viral replication and peak live viral loads were not significantly different at low and high infectious doses (LD and HD), the HD-infected immunocompetent animals developed severe lung disease pathology. The immunocompetent animals cleared the live virus in all tested tissues by 12 days post-infection and generated a robust serum antibody response. In contrast, immunocompromised hamsters mounted an inadequate SARS-CoV-2 neutralizing antibody response, and the virus was detected in the pulmonary and multiple extrapulmonary organs until 16 days post-infection. These hamsters also had prolonged moderate inflammation with severe bronchiolar-alveolar hyperplasia/metaplasia. Consistent with the difference in disease presentation, distinct changes in the expression of inflammation and immune cell response pathways and network genes were seen in the lungs of infected immunocompetent and immunocompromised animals. This study highlights the interplay between the kinetics of viral replication and the dynamics of SARS-CoV-2 pathogenesis at organ-level niches and maps how COVID-19 symptoms vary in different immune contexts. Together, our data suggest that the histopathological manifestations caused by progressive SARS-CoV-2 infection may be a better predictor of COVID-19 severity than individual measures of viral load, antibody response, and cytokine storm at the systemic or local (lungs) levels in the immunocompetent and immunocompromised hosts.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010098
Author(s):  
Richard D. Bungiro ◽  
Lisa M. Harrison ◽  
Blaise Dondji ◽  
Michael Cappello

Background Hundreds of millions of people in poor countries continue to suffer from disease caused by bloodfeeding hookworms. While mice and rats are not reliably permissive hosts for any human hookworm species, adult Golden Syrian hamsters are fully permissive for the human and animal pathogen Ancylostoma ceylanicum. Similar to humans, hamsters may be infected with A. ceylanicum third-stage larvae orally or percutaneously. Oral infection typically leads to consistent worm yields in hamsters but may not accurately reflect the clinical and immunological manifestations of human infection resulting from skin penetration. Methodology/Principal findings In this study we compared host responses following percutaneous infection to those utilizing an established oral infection protocol. Infected hamsters exhibited a dose-dependent pathology, with 1000 percutaneous larvae (L3) causing anemia and adult worm recovery comparable to that of 50 orally administered L3. A delayed arrival and maturity of worms in the intestine was observed, as was variation in measured cellular immune responses. A long-term study found that the decline in blood hemoglobin was more gradual and did not reach levels as low, with the nadir of disease coming later in percutaneously infected hamsters. Both groups exhibited moderate growth delay, an effect that was more persistent in the percutaneously infected group. Fecal egg output also peaked later and at lower levels in the percutaneously infected animals. In contrast to orally infected hamsters, antibody titers to larval antigens continued to increase throughout the course of the experiment in the percutaneous group. Conclusions/Significance These results demonstrate that the route of infection with A. ceylanicum impacts disease pathogenesis, as well as humoral and cellular immune responses in an experimental setting. These data further validate the utility of the Golden Syrian hamster as a model of both oral and percutaneous infection with human hookworms.


mBio ◽  
2021 ◽  
Author(s):  
Rafael Tomoya Michita ◽  
Indira U. Mysorekar

There is growing evidence that coronavirus disease 2019 (COVID-19) affects males more severely than females, including compelling evidence indicating that biological sex is an important clinical factor influencing disease pathology and outcomes. In their recent article in mBio , Dhakal et al. find further evidence to support this hypothesis as they interrogate biological sex differences in the pathogenesis and clinical features of COVID-19 in the golden Syrian hamster model.


2021 ◽  
Vol 189 ◽  
pp. 98-109
Author(s):  
Ellie J Putz ◽  
Claire B Andreasen ◽  
Judith A Stasko ◽  
Luis G V Fernandes ◽  
Mitchell V Palmer ◽  
...  

2021 ◽  
Author(s):  
Kelvin Yeung ◽  
Wei Qiao ◽  
Hui En Lau ◽  
Hui Zhi Xie ◽  
Vincent Poon ◽  
...  

Abstract Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterized the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. The bone loss progressively worsens from the acute phase to the post-recovery phase. Mechanistically, the bone loss was associated with SARS-CoV-2-induced cytokine dysregulation which upregulates osteoclastic differentiation of monocyte-macrophage lineage. The pro-inflammatory cytokines further trigger a second wave of cytokine storm in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings in this established hamster model suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.


2021 ◽  
Author(s):  
Wei Qiao ◽  
Hui En Lau ◽  
Huizhi Xie ◽  
Vincent K.M. Poon ◽  
Chris C.S. Chan ◽  
...  

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterized the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. The bone loss progressively worsens from the acute phase to the post-recovery phase. Mechanistically, the bone loss was associated with SARS-CoV-2-induced cytokine dysregulation which upregulates osteoclastic differentiation of monocyte-macrophage lineage. The pro-inflammatory cytokines further trigger a second wave of cytokine storm in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings in this established hamster model suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.


Sign in / Sign up

Export Citation Format

Share Document