Physico-chemical dynamics of protein corona formation on 3D-bimetallic Au@Pd nanodendrites and its implications on biocompatibility

2021 ◽  
pp. 117329
Author(s):  
Adewale O. Oladipo ◽  
Lesego G. Modibedi ◽  
Solange I.I. Iku ◽  
Karin de Bruyn ◽  
Thabo T.I. Nkambule ◽  
...  
2014 ◽  
Vol 5 ◽  
pp. 1380-1392 ◽  
Author(s):  
Dominic Docter ◽  
Christoph Bantz ◽  
Dana Westmeier ◽  
Hajo J Galla ◽  
Qiangbin Wang ◽  
...  

Besides the lung and skin, the gastrointestinal (GI) tract is one of the main targets for accidental exposure or biomedical applications of nanoparticles (NP). Biological responses to NP, including nanotoxicology, are caused by the interaction of the NP with cellular membranes and/or cellular entry. Here, the physico-chemical characteristics of NP are widely discussed as critical determinants, albeit the exact mechanisms remain to be resolved. Moreover, proteins associate with NP in physiological fluids, forming the protein corona potentially transforming the biological identity of the particle and thus, adding an additional level of complexity for the bio–nano responses. Here, we employed amorphous silica nanoparticles (ASP) and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins. Comprehensive experimental approaches, such as quantifying cellular metabolic activity, microscopic observation of cell morphology, and high-throughput cell analysis revealed a dose- and time-dependent toxicity primarily upon exposure with ASP30 (Ø = 30 nm). Albeit smaller (ASP20, Ø = 20 nm) or larger particles (ASP100; Ø = 100 nm) showed a similar zeta potential, they both displayed only low toxicity. Importantly, the adverse effects triggered by ASP30/ASP30L were significantly ameliorated upon formation of the protein corona, which we found was efficiently established on all ASP studied. As a potential explanation, corona formation reduced ASP30 cellular uptake, which was however not significantly affected by ASP surface charge in our model. Collectively, our study uncovers an impact of ASP size as well as of the protein corona on cellular toxicity, which might be relevant for processes at the nano–bio interface in general.


Biomaterials ◽  
2016 ◽  
Vol 106 ◽  
pp. 111-118 ◽  
Author(s):  
Hui-Wen Chen ◽  
Chen-Yu Huang ◽  
Shu-Yi Lin ◽  
Zih-Syun Fang ◽  
Chen-Hsuan Hsu ◽  
...  

Small ◽  
2020 ◽  
Vol 16 (25) ◽  
pp. 2070141
Author(s):  
Rahul Madathiparambil Visalakshan ◽  
Laura E. González García ◽  
Mercy R. Benzigar ◽  
Arthur Ghazaryan ◽  
Johanna Simon ◽  
...  

1906 ◽  
Vol 25 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Charles E. Fawsitt

Some time ago, while studying the chemical dynamics of the changes which occur in solutions of urea or carbamide, I came upon some rather unexpected results which led me to hope that investigations conducted on somewhat the same lines with other substances of the amide group might prove to yield results of some interest. The amides referred to are those derived from carboxylic acids. While proceeding to this investigation I noticed some measurements, obtained in connection with the viscosity of aqueous solutions of carbamide, which appeared of sufficient interest to demand an inquiry into the nature of solutions of this class of substances before proceeding further with the subject of inquiry in the manner at first intended.


2020 ◽  
Author(s):  
Xiaoning Zhang ◽  
Meifeng Li ◽  
Yuanping Lv ◽  
Xiaoling Sun ◽  
Yao Han ◽  
...  

Abstract Gold nanoparticles (AuNPs) are modified immediately by the adsorption of β-lactoglobulin (βlg) when designed as colorimetric probe in raw milk, leading to the formation of a protein corona. This adsorption results mainly from a fast electrostatic force and a slow formation of Au-S covalent bonds, which is a precondition for the use of AuNPs in biodetection. The proteins corona influences the structure and bioactivity of adsorbed protein, such as the allergy. In this study, the mechanism of βlg adsorbed on AuNPs was investigated in terms of stoichiometry, binding affinity (Ka), time evolution of Au-S bond, and general secondary structure changes to address the desensitization of AuNPs. The results show that about 3,600 βlg are adsorbed on a single AuNPs, and the Ka is 2.9 ± 0.7 × 10 6 M -1 . The formation of Au-S bonds takes about 9 h, which is the time needed for complete changes in secondary structure and the IgE combining capacity. The structure of allergenic epitopes assigned to β-sheet was destroyed by the formation of Au-S bond, then induced to the decrease allergy. Furthermore, Fourier transform infrared spectroscopy confirmed a decrease in β-sheet contents after conjugated with AuNPs.


Sign in / Sign up

Export Citation Format

Share Document