secondary structure
Recently Published Documents


TOTAL DOCUMENTS

7779
(FIVE YEARS 1078)

H-INDEX

185
(FIVE YEARS 13)

2022 ◽  
Vol 61 (4) ◽  
Author(s):  
Vignesh Athiyarath ◽  
Mithun C. Madhusudhanan ◽  
Sooraj Kunnikuruvan ◽  
Kana M. Sureshan

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Warren B Rouse ◽  
Ryan J Andrews ◽  
Nicholas J Booher ◽  
Jibo Wang ◽  
Michael E Woodman ◽  
...  

ABSTRACT In recent years, interest in RNA secondary structure has exploded due to its implications in almost all biological functions and its newly appreciated capacity as a therapeutic agent/target. This surge of interest has driven the development and adaptation of many computational and biochemical methods to discover novel, functional structures across the genome/transcriptome. To further enhance efforts to study RNA secondary structure, we have integrated the functional secondary structure prediction tool ScanFold, into IGV. This allows users to directly perform structure predictions and visualize results—in conjunction with probing data and other annotations—in one program. We illustrate the utility of this new tool by mapping the secondary structural landscape of the human MYC precursor mRNA. We leverage the power of vast ‘omics’ resources by comparing individually predicted structures with published data including: biochemical structure probing, RNA binding proteins, microRNA binding sites, RNA modifications, single nucleotide polymorphisms, and others that allow functional inferences to be made and aid in the discovery of potential drug targets. This new tool offers the RNA community an easy to use tool to find, analyze, and characterize RNA secondary structures in the context of all available data, in order to find those worthy of further analyses.


2022 ◽  
Vol 134 (4) ◽  
Author(s):  
Vignesh Athiyarath ◽  
Mithun C. Madhusudhanan ◽  
Sooraj Kunnikuruvan ◽  
Kana M. Sureshan

Author(s):  
Felix Freire ◽  
Juan José Tarrío ◽  
Rafael Rodríguez ◽  
Berta Fernández ◽  
Emilio Quiñoá

2022 ◽  
Author(s):  
Felix Freire ◽  
Juan José Tarrío ◽  
Rafael Rodríguez ◽  
Berta Fernández ◽  
Emilio Quiñoá

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 230
Author(s):  
Kevin-Phil Wüsthoff ◽  
Gerhard Steger

In 1985, Keese and Symons proposed a hypothesis on the sequence and secondary structure of viroids from the family : their secondary structure can be subdivided into five structural and functional domains and “viroids have evolved by rearrangement of domains between different viroids infecting the same cell and subsequent mutations within each domain”; this article is one of the most cited in the field of viroids. Employing the pairwise alignment method used by Keese and Symons and in addition to more recent methods, we tried to reproduce the original results and extent them to further members of which were unknown in 1985. Indeed, individual members of consist of a patchwork of sequence fragments from the family but the lengths of fragments do not point to consistent points of rearrangement, which is in conflict with the original hypothesis of fixed domain borders.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Cheng-Yu Tsai ◽  
Emmanuel Oluwatobi Salawu ◽  
Hongchun Li ◽  
Guan-Yu Lin ◽  
Ting-Yu Kuo ◽  
...  

AbstractThe systematic design of functional peptides has technological and therapeutic applications. However, there is a need for pattern-based search engines that help locate desired functional motifs in primary sequences regardless of their evolutionary conservation. Existing databases such as The Protein Secondary Structure database (PSS) no longer serves the community, while the Dictionary of Protein Secondary Structure (DSSP) annotates the secondary structures when tertiary structures of proteins are provided. Here, we extract 1.7 million helices from the PDB and compile them into a database (Therapeutic Peptide Design database; TP-DB) that allows queries of compounded patterns to facilitate the identification of sequence motifs of helical structures. We show how TP-DB helps us identify a known purification-tag-specific antibody that can be repurposed into a diagnostic kit for Helicobacter pylori. We also show how the database can be used to design a new antimicrobial peptide that shows better Candida albicans clearance and lower hemolysis than its template homologs. Finally, we demonstrate how TP-DB can suggest point mutations in helical peptide blockers to prevent a targeted tumorigenic protein-protein interaction. TP-DB is made available at http://dyn.life.nthu.edu.tw/design/.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jake M. Peterson ◽  
Collin A. O’Leary ◽  
Walter N. Moss

AbstractInfluenza virus is a persistent threat to human health; indeed, the deadliest modern pandemic was in 1918 when an H1N1 virus killed an estimated 50 million people globally. The intent of this work is to better understand influenza from an RNA-centric perspective to provide local, structural motifs with likely significance to the influenza infectious cycle for therapeutic targeting. To accomplish this, we analyzed over four hundred thousand RNA sequences spanning three major clades: influenza A, B and C. We scanned influenza segments for local secondary structure, identified/modeled motifs of likely functionality, and coupled the results to an analysis of evolutionary conservation. We discovered 185 significant regions of predicted ordered stability, yet evidence of sequence covariation was limited to 7 motifs, where 3—found in influenza C—had higher than expected amounts of sequence covariation.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 89
Author(s):  
Yang Gao ◽  
Yawu Zhao ◽  
Yuming Ma ◽  
Yihui Liu

Protein secondary structure prediction is an important topic in bioinformatics. This paper proposed a novel model named WS-BiLSTM, which combined the wavelet scattering convolutional network and the long-short-term memory network for the first time to predict protein secondary structure. This model captures nonlocal interactions between amino acid sequences and remembers long-range interactions between amino acids. In our WS-BiLSTM model, the wavelet scattering convolutional network is used to extract protein features from the PSSM sliding window; the extracted features are combined with the original PSSM data as the input features of the long-short-term memory network to predict protein secondary structure. It is worth noting that the wavelet scattering convolutional network is asymmetric as a member of the continuous wavelet family. The Q3 accuracy on the test set CASP9, CASP10, CASP11, CASP12, CB513, and PDB25 reached 85.26%, 85.84%, 84.91%, 85.13%, 86.10%, and 85.52%, which were higher 2.15%, 2.16%, 3.5%, 3.19%, 4.22%, and 2.75%, respectively, than using the long-short-term memory network alone. Comparing our results with the state-of-art methods shows that our proposed model achieved better results on the CB513 and CASP12 data sets. The experimental results show that the features extracted from the wavelet scattering convolutional network can effectively improve the accuracy of protein secondary structure prediction.


Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 138
Author(s):  
Jin Wang ◽  
Rachit Saxena ◽  
Sai Kranthi Vanga ◽  
Vijaya Raghavan

Cow’s milk is considered an excellent protein source. However, the digestibility of milk proteins needs to be improved. This study aimed to evaluate the relationship between the functional properties of milk proteins and their structure upon microwave, ultrasound, and thermosonication treatments. The protein content, digestibility, and secondary-structure changes of milk proteins were determined. The results demonstrated that almost 35% of the proteins in the untreated samples had a α-helix structure and approximately 29% a β-sheet and turns structure. Regarding the untreated samples, the three treatments increased the α-helices and correspondingly decreased the β-sheets and turns. Moreover, the highest milk protein digestibility was observed for the ultrasound-treated samples (90.20–94.41%), followed by the microwave-treated samples (72.56–93.4%), whereas thermosonication resulted in a lower digestibility (68.76–78.81%). The milk protein content was reduced as the microwave processing time and the temperature increased. The final milk protein available in the sample was lower when microwave processing was conducted at 75 °C and 90 °C compared to 60 °C, whereas the ultrasound treatment significantly improved the protein content, and no particular trend was observed for the thermosonicated samples. Thus, ultrasound processing shows a potential application in improving the protein quality of cow’s milk.


Sign in / Sign up

Export Citation Format

Share Document