nanoparticle shape
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 91)

H-INDEX

36
(FIVE YEARS 8)

ACS Omega ◽  
2022 ◽  
Author(s):  
Alejandro Prada ◽  
Rafael I. González ◽  
María B. Camarada ◽  
Sebastián Allende ◽  
Alejandra Torres ◽  
...  

Author(s):  
Kostas Parkatzidis ◽  
Nghia P. Truong ◽  
Manon Rolland ◽  
Viviane Lutz‐Bueno ◽  
Emily H. Pilkington ◽  
...  

2022 ◽  
Author(s):  
Kostas Parkatzidis ◽  
Nghia P. Truong ◽  
Manon Rolland ◽  
Viviane Lutz‐Bueno ◽  
Emily H. Pilkington ◽  
...  

Author(s):  
Prasad Rama ◽  
Zareen Abbas

The role of nanoparticle shape in the interaction and adsorption of organic molecules on the particle surface is an unexplored area. On the other hand, such knowledge is not only...


2021 ◽  
Author(s):  
Yunxian Pei ◽  
Xuelan Zhang ◽  
Liancun Zheng ◽  
Xinzi Wang

Abstract In this paper, we study coupled flow and heat transfer of power-law nanofluids on a non-isothermal rough rotating disk subject to a magnetic field. The problem is formulated in terms of specified curvilinear orthogonal coordinate system. An improved BVP4C algorithm is proposed and numerical solutions are obtained. The influence of volume fraction, types and shapes of nanoparticles, magnetic field and power-law index on the flow and heat transfer behavior are discussed.<br/>Results show that the power-law exponents (PLE), nanoparticle volume fraction (NVF) and magnetic field inclination angle (MFIA) are almost no effects on velocities in wave surface direction, but have small or significant effects on azimuth direction. NVF have remarkable influence on local Nusselt number (LNN) and friction coefficients (FC) in radial and azimuth directions (AD). LNN increases with NVF while FC in AD decrease. The types of nanoparticles, magnetic field strength and inclination have small effects on LNN, but they have remarkable effects on the friction coefficients with positively correlated while the inclination is negatively correlated with heat transfer rate. The size of the nanoparticle shape factor is positively correlated with LNN.


Author(s):  
N. Sandeep ◽  
G.P. Ashwinkumar

In this paper, a numerical computational work is carried out to investigate the significance of nanoparticle shape on magnetohydrodynamic stagnation-point flow of Carreau nanoliquid caused by a horizontally moving thin needle. The drive and thermal transport nature of Ti6Al4V+Ethylene glycol nanoliquid under the stimulus of space-dependent heat source and magnetized force is discussed numerically. The novelty of this work is to obtain the simultaneous solutions for three different shapes of nanoparticles namely spherical, cylindrical and laminar. The flow governing partial differential equations are transformed into ordinary differential equations with appropriate similarity variables and solved numerically by using Runge–Kutta and Newton's approach. Numerical outcomes of velocity and thermal distributions under the influence of different physical parameters are illustrated via graphical trends, wall friction and rate of heat transfer are interpreted using tabular values. It reveals from results that the thermal transfer performance of the Carreau nanoliquid is advanced when spherical shaped nanoparticles are used as compared with cylindrical and laminar-shaped nanoparticles. Also, it is witnessed that needle thickness parameter plays vital role in augmenting thermal transport rate of the nanoliquid.


Sign in / Sign up

Export Citation Format

Share Document