Isothermal-isobaric algorithm to study the effects of rotational degrees of freedom-Benz water model

2021 ◽  
pp. 118152
Author(s):  
Peter Ogrin ◽  
Tomaz Urbic
2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2013 ◽  
Vol 117 (13) ◽  
pp. 6800-6806 ◽  
Author(s):  
M. Jafary-Zadeh ◽  
C. D. Reddy ◽  
Yong-Wei Zhang

2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


2013 ◽  
Vol 57 (03) ◽  
pp. 125-140
Author(s):  
Daniel A. Liut ◽  
Kenneth M. Weems ◽  
Tin-Guen Yen

A quasi-three-dimensional hydrodynamic model is presented to simulate shallow water phenomena. The method is based on a finite-volume approach designed to solve shallow water equations in the time domain. The nonlinearities of the governing equations are considered. The methodology can be used to compute green water effects on a variety of platforms with six-degrees-of-freedom motions. Different boundary and initial conditions can be applied for multiple types of moving platforms, like a ship's deck, tanks, etc. Comparisons with experimental data are discussed. The shallow water model has been integrated with the Large Amplitude Motions Program to compute the effects of green water flow over decks within a time-domain simulation of ship motions in waves. Results associated to this implementation are presented.


1986 ◽  
Vol 30 (03) ◽  
pp. 177-185
Author(s):  
Michael M. Bernitsas ◽  
John E. Kokarakis

A nonlinear model for the dynamic behavior of tubular beams such as marine risers, pipelines, legs of tension leg platforms, and drill strings is developed. The formulation includes three translational degrees of freedom of the riser cross section and three rotational degrees of freedom for shear and torsion. Nonlinear constitutive equations for cross sections of unequal principal stiffnesses and extensible material are derived. Initial structural imperfections which are inherent in long risers are modeled in the form of initial curvature and geometric torsion which do not induce strains. The inertia forces due to the motion of the riser and internal fluid motions are formulated. The external hydrodynamic and hydrostatic forces are integrated on the riser surface as pressure and traction forces. The model is a comprehensive consistent nonlinear formulation of the riser dynamics and can be used for evaluation of the significance of nonlinear effects.


Sign in / Sign up

Export Citation Format

Share Document