Abstract
Event-driven neuromorphic imagers have a number of attractive properties including low-power consumption, high dynamic range, the ability to detect fast events, low memory consumption and low band-width requirements. One of the biggest challenges with using event-driven imagery is that the field of event data processing is still embryonic. In contrast, decades worth of effort have been invested in the analysis of frame-based imagery. Hybrid approaches for applying established frame-based analysis techniques to event-driven imagery have been studied since event-driven imagers came into existence. However, the process for forming frames from event-driven imagery has not been studied in detail. This work presents a principled digital coded exposure approach for forming frames from event-driven imagery that is inspired by the physics exploited in a conventional camera featuring a shutter. The technique described in this work provides a fundamental tool for understanding the temporal information content that contributes to the formation of a frame from event-driven imagery data. Event-driven imagery allows for the application of arbitrary virtual digital shutter functions to form the final frame on a pixel-by-pixel basis. The proposed approach allows for the careful control of the spatio-temporal information that is captured in the frame. Furthermore, unlike a conventional physical camera, event-driven imagery can be formed into any variety of possible frames in post-processing after the data is captured. Furthermore, unlike a conventional physical camera, coded-exposure virtual shutter functions can assume arbitrary values including positive, negative, real, and complex values. The coded exposure approach also enables the ability to perform applications of industrial interest such as digital stroboscopy without any additional hardware. The ability to form frames from event-driven imagery in a principled manner opens up new possibilities in the ability to use conventional frame-based image processing techniques on event-driven imagery.