inverse dynamic
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 114)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
Vol 1 (2) ◽  
pp. 58-64
Author(s):  
Peter Bakucz ◽  
Gabor Kiss

In this paper, we approximate the probable maximum (very rare, extremal) values of highly autonomous driving sensor signals by reviewing two methods based on dynamic time series scaling and multifractal statistics.The article is a significantly revised and modified version of the conference material ("Determination of extreme values ​​in autonomous driving based on multifractals and dynamic scaling") presented at the conference "2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics, SACI". The method of dynamic scaling is originally derived from statistical physics and approximates the critical interface phenomena. The time series of the vibration signal of the corner radar can be considered as a fractal surface and grow appropriately for a given scale-inverse dynamic equation. In the second method we initiate, that multifractal statistics can be useful in searching for statistical analog time series that have a similar multifractal spectrum as the original sensor time series.


Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Antonio Ruiz ◽  
Francisco J. Campa ◽  
Oscar Altuzarra ◽  
Saioa Herrero ◽  
Mikel Diez

Compliant mechanisms are widely used for instrumentation and measuring devices for their precision and high bandwidth. In this paper, the mechatronic model of a compliant 3PRS parallel manipulator is developed, integrating the inverse and direct kinematics, the inverse dynamic problem of the manipulator and the dynamics of the actuators and the control. The kinematic problem is solved, assuming a pseudo-rigid model for the deflection in the compliant revolute and spherical joints. The inverse dynamic problem is solved, using the Principle of Energy Equivalence. The mechatronic model allows the prediction of the bandwidth of the manipulator motion in the 3 degrees of freedom for a given control and set of actuators, helping in the design of the optimum solution. A prototype is built and validated, comparing experimental signals with the ones from the model.


2021 ◽  
Vol 11 (24) ◽  
pp. 12140
Author(s):  
Sanubar Ghorbani Faal ◽  
Elham Shirzad ◽  
Ali Sharifnezhad ◽  
Mojtaba Ashrostaghi ◽  
Roozbeh Naemi

Stiffness of ankle joint has been investigated in a wide range of biomechanical studies with a focus on the improvement of performance and reduction in the risk of injury. However, measuring ankle joint stiffness (AJS) using the existing conventional methodologies requires sophisticated equipment such as force plate and motion analyses systems. This study presents a novel method for measuring AJS during a hopping task with no force or motion measurement system. Also the validity of the proposed new method was investigated by comparing the results against those obtained using conventional method in which motion capture and force plate data are used. Twelve participants performed the controlled hopping task at 2.2 Hz, on a force platform, and six high speed cameras recorded the movement. To calculate the AJS in both methods, the lower extremity was modeled as a three linked rigid segments robot with three joints. In the new method, the contact time and flight time were used to calculate ground reaction force, and inverse kinematic and inverse dynamic approaches were used to calculate the ankle kinematic and kinetic. The AJS calculated using the new method was compared against the results of conventional method as the reference. The calculated AJS using this new method (506.47 ± 177.84 N·m/rad) showed a significant correlation (r = 0.752) with the AJS calculated using conventional method (642.39 ± 185.96 N·m/rad). The validation test showed a mean difference of −24.76% using Bland–Altman plot. The presented method can be used as a valid, and low-cost tool for assessing AJS in the field in low resource settings.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tsuyoshi Saito ◽  
Naomichi Ogihara ◽  
Tomohiko Takei ◽  
Kazuhiko Seki

Toward clarifying the biomechanics and neural mechanisms underlying coordinated control of the complex hand musculoskeletal system, we constructed an anatomically based musculoskeletal model of the Japanese macaque (Macaca fuscata) hand, and then estimated the muscle force of all the hand muscles during a precision grip task using inverse dynamic calculation. The musculoskeletal model was constructed from a computed tomography scan of one adult male macaque cadaver. The hand skeleton was modeled as a chain of rigid links connected by revolute joints. The path of each muscle was defined as a series of points connected by line segments. Using this anatomical model and a model-based matching technique, we constructed 3D hand kinematics during the precision grip task from five simultaneous video recordings. Specifically, we collected electromyographic and kinematic data from one adult male Japanese macaque during the precision grip task and two sequences of the precision grip task were analyzed based on inverse dynamics. Our estimated muscular force patterns were generally in agreement with simultaneously measured electromyographic data. Direct measurement of muscle activations for all the muscles involved in the precision grip task is not feasible, but the present inverse dynamic approach allows estimation for all the hand muscles. Although some methodological limitations certainly exist, the constructed model analysis framework has potential in clarifying the biomechanics and neural control of manual dexterity in macaques and humans.


2021 ◽  
Author(s):  
Antonio R. Segales ◽  
Phillip B. Chilson ◽  
Jorge L. Salazar-Cerreño

Abstract. Small Unmanned Aerial Systems (UAS) are becoming a good candidate technology for solving the observational gap in the planetary boundary layer (PBL). Additionally, the rapid miniaturization of thermodynamic sensors over the past years allowed for more seamless integration with small UASs and more simple system characterization procedures. However, given that the UAS alters its immediate surrounding air to stay aloft by nature, such integration can introduce several sources of bias and uncertainties to the measurements if not properly accounted for. If weather forecast models were to use UAS measurements, then these errors could significantly impact numerical predictions and, hence, influence the weather forecasters' situational awareness and their ability to issue warnings. Therefore, some considerations for sensor placement are presented in this study as well as flight patterns and strategies to minimize the effects of UAS on the weather sensors. Moreover, advanced modeling techniques and signal processing algorithms should be investigated to compensate for slow sensor dynamics. For this study, dynamic models were developed to characterize and assess the transient response of commonly used temperature and humidity sensors. Consequently, an inverse dynamic model processing (IDMP) algorithm that enhances signal restoration is presented and demonstrated on simulated data. A few real case studies are discussed that show a clear distinction between the rapid evolution of the PBL and sensor time response. The conclusions of this study provide information regarding the effectiveness of the overall process of mitigating undesired biases and distortions in the data sampled with a UAS and increase the data quality and reliability.


2021 ◽  
Author(s):  
Fu Yi-Meng ◽  
Zhou Xiao-Jun ◽  
Yang Xue-Feng ◽  
Xiao Peng

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7353
Author(s):  
Mohsen M. Diraneyya ◽  
JuHyeong Ryu ◽  
Eihab Abdel-Rahman ◽  
Carl T. Haas

Inertial Motion Capture (IMC) systems enable in situ studies of human motion free of the severe constraints imposed by Optical Motion Capture systems. Inverse dynamics can use those motions to estimate forces and moments developing within muscles and joints. We developed an inverse dynamic whole-body model that eliminates the usage of force plates (FPs) and uses motion patterns captured by an IMC system to predict the net forces and moments in 14 major joints. We validated the model by comparing its estimates of Ground Reaction Forces (GRFs) to the ground truth obtained from FPs and comparing predictions of the static model’s net joint moments to those predicted by 3D Static Strength Prediction Program (3DSSPP). The relative root-mean-square error (rRMSE) in the predicted GRF was 6% and the intraclass correlation of the peak values was 0.95, where both values were averaged over the subject population. The rRMSE of the differences between our model’s and 3DSSPP predictions of net L5/S1 and right and left shoulder joints moments were 9.5%, 3.3%, and 5.2%, respectively. We also compared the static and dynamic versions of the model and found that failing to account for body motions can underestimate net joint moments by 90% to 560% of the static estimates.


Sign in / Sign up

Export Citation Format

Share Document