Molecular structure, Hirshfeld surface analysis, spectroscopic (FT-IR, Laser-Raman, UV–vis. and NMR), HOMO-LUMO and NBO investigations on N -(12-amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide

2018 ◽  
Vol 1171 ◽  
pp. 696-705 ◽  
Author(s):  
Can Alaşalvar ◽  
Nuri Öztürk ◽  
Alaa A.-M. Abdel-Aziz ◽  
Halil Gökce ◽  
Adel S. El-Azab ◽  
...  
Author(s):  
Gamal Al Ati ◽  
Karim Chkirate ◽  
Joel T. Mague ◽  
Nadeem Abad ◽  
Redouane Achour ◽  
...  

The title molecule, C13H16N4O, adopts an angular conformation. In the crystal a layer structure is generated by N—H...O and N—H...N hydrogen bonds together with C—H...π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (53.8%), H...C/C...H (21.7%), H...N/N...H (13.6%), and H...O/O...H (10.8%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 5.0452 eV.


2019 ◽  
Vol 75 (11) ◽  
pp. 1638-1642
Author(s):  
M. Beemarao ◽  
S. Silambarasan ◽  
A. Jamal Abdul Nasser ◽  
M. Purushothaman ◽  
K. Ravichandran

The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H...O, O—H...N, C—H...O and C—H...Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule.


Author(s):  
Zeliha Atioğlu ◽  
S. Bindya ◽  
Mehmet Akkurt ◽  
C. S. Chidan Kumar

In the title compound, C15H10BrFO, the molecular structure consists of a 3-bromophenyl ring and a 4-fluorophenyl ring linked via a prop-2-en-1-one spacer. The 3-bromophenyl and 4-fluorophenyl rings make a dihedral angle of 48.90 (15)°. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, molecules are linked by C—H...π interactions between the bromophenyl and fluorophenyl rings of molecules, resulting in a two-dimensional layered structure parallel to the ab plane. The molecular packing is stabilized by weak Br...H and F...H contacts, one of which is on the one side of each layer, and the second is on the other. The intermolecular interactions in the crystal packing were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are Cl...H/H...Cl (20.8%), followed by C...H/H...C (31.1%), H...H (21.7%), Br...H/H...Br (14.2%), F...H/H...F (9.8%), O...H/H...O (9.7%).


Author(s):  
Zainab Jabri ◽  
Karim Jarmoni ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
Safia Sabir ◽  
...  

The title compound, C24H30Br2N4O2, consists of a 2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromododecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolopyridine moiety, giving the molecule a V-shape. In the crystal, the imidazolopyridine units are associated through slipped π–π stacking interactions together with weak C—HPyr...ONtr and C—HBrmdcyl...ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromododecyl) hydrogen bonds. The 12-bromododecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (48.1%), H...Br/Br...H (15.0%) and H...O/O...H (12.8%) interactions. The optimized molecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Sign in / Sign up

Export Citation Format

Share Document