Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation

2010 ◽  
Vol 527 (4-5) ◽  
pp. 1230-1235 ◽  
Author(s):  
F. Djavanroodi ◽  
M. Ebrahimi
2010 ◽  
Vol 97-101 ◽  
pp. 3075-3078
Author(s):  
Gang Yi Cai ◽  
Xiao Xia Liu

Finite element simulation of the effects of mould angle on the equal channel angular pressing (ECAP) for Al-Zn-Mg-Cu aluminum alloy was investigated by using DEFORM-3D program. The results show that the work load ascended with the increasing of the mould angle and was divided into five stages including rapid increasing stage, steady stage, rapid increasing stage, steady stage and rapid drop stage. When the angle decreased from 150° to 90°, the maximum load increased by 2.87 times and the energy consuming increased by 2.36 times. In addition, with the decreasing of mould angle, the average effective strain increased after single extrusion, while the degree of effective strain uniformity of the sample decreased. There were greater strain grads between inner and surface part. As mentioned above, large angle mould should be adopted on ECAP for Al-Zn-Mg-Cu aluminum alloy in order to ensure extrusion smoothly and attain homogeneous fine grain.


2015 ◽  
Vol 44 (5) ◽  
pp. 1082-1087 ◽  
Author(s):  
Wang Xiaomei ◽  
Chen Yinjia ◽  
Han Qichen ◽  
Chen Aiying ◽  
Li Xiang ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


Sign in / Sign up

Export Citation Format

Share Document