finite element simulation
Recently Published Documents


TOTAL DOCUMENTS

3890
(FIVE YEARS 724)

H-INDEX

69
(FIVE YEARS 9)

2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Malik Athafarras ◽  
Djati Wibowo Djamari ◽  
Muhamad Rausyan Fikri ◽  
Bentang Arief Budiman ◽  
Farid Triawan ◽  
...  

AbstractThe problem considered in this work is the development of simulation method for simulating car crash which utilizes simple car—impact attenuator model developed in MATLAB. Usually, car crash simulation is done using full finite element simulation which could take hours or days depending on the model size. The purpose of proposed method is to achieve quick results on the car crash simulation. Past works which utilizes simple car—impact attenuator model to simulate car crash use continuous time model and the impact attenuator parameter is obtained from the experimental results. Different from the related works, this work uses discrete time model, and the impact attenuator parameter is obtained from finite element simulation. Therefore, the proposed simulation method is not only achieving quick simulation results but also minimizing the cost and time in obtaining the impact attenuator parameter. The proposed method is suitable for parametric study of impact attenuator.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012064
Author(s):  
Zhanyi Zhang ◽  
Peiheng Long

Abstract In order to understand the stress of small through tied arch bridge. In this paper, the finite element simulation analysis of Lu Shanqu bridge is carried out in the completion stage by using MADIS / civil software, and the tie bars, arch ribs and suspenders of the superstructure are monitored. The results show that the axial force of the arch rib of this bridge is reduced by the balance of the tie rod, and the bending moment of the tie rod is greatly reduced by the action of the suspender. The stress characteristics of the bridge type are internal statically indeterminate and external statically indeterminate structure.


Sign in / Sign up

Export Citation Format

Share Document