Comparative in vitro activities of seven antifungal drugs against clinical isolates of Candida parapsilosis complex

2020 ◽  
Vol 30 (3) ◽  
pp. 100968
Author(s):  
S. Khodavaisy ◽  
H. Badali ◽  
J.F. Meis ◽  
M. Modiri ◽  
S. Mahmoudi ◽  
...  
2010 ◽  
Vol 54 (4) ◽  
pp. 1636-1638 ◽  
Author(s):  
Mohammad J. Najafzadeh ◽  
Hamid Badali ◽  
Maria Teresa Illnait-Zaragozi ◽  
G. Sybren De Hoog ◽  
Jacques F. Meis

ABSTRACT The in vitro activities of eight antifungal drugs against clinical isolates of Fonsecaea pedrosoi (n = 21), Fonsecaea monophora (n = 25), and Fonsecaea nubica (n = 9) were tested. The resulting MIC90s for all strains (n = 55) were as follows, in increasing order: posaconazole, 0.063 μg/ml; itraconazole, 0.125 μg/ml; isavuconazole, 0.25 μg/ml; voriconazole, 0.5 μg/ml; amphotericin B, 2 μg/ml; caspofungin, 2 μg/ml; anidulafungin, 2 μg/ml; and fluconazole, 32 μg/ml.


2006 ◽  
Vol 5 (10) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. Arunmozhi Balajee ◽  
David Nickle ◽  
Janos Varga ◽  
Kieren A. Marr

ABSTRACT Aspergillus fumigatus has been understood to be the most common cause of invasive aspergillosis (IA) in all epidemiological surveys. However, recent studies have uncovered a large degree of genetic heterogeneity between isolates morphologically identified as A. fumigatus, leading to the description of a new species, Aspergillus lentulus. Here, we examined the genetic diversity of clinical isolates identified as A. fumigatus using restriction enzyme polymorphism analysis and sequence-based identification. Analysis of 50 clinical isolates from geographically diverse locations recorded the presence of at least three distinct species: A. lentulus, Aspergillus udagawae, and A. fumigatus. In vitro, A. lentulus isolates demonstrated decreased susceptibility to antifungal drugs currently used for IA, including amphotericin B, voriconazole, and caspofungin; A. udagawae isolates demonstrated decreased in vitro susceptibility to amphotericin B. Results of the present study demonstrate that current phenotypic methods to identify fungi do not differentiate between genetically distinct species in the A. fumigatus group. Differential antifungal susceptibilities of these species may account for some of the reported poor outcomes of therapy in clinical studies.


2011 ◽  
Vol 106 (6) ◽  
pp. 646-654 ◽  
Author(s):  
Regina Helena Pires ◽  
Jaime Maia dos Santos ◽  
José Eduardo Zaia ◽  
Carlos Henrique Gomes Martins ◽  
Maria José Soares Mendes-Giannini

1999 ◽  
Vol 43 (11) ◽  
pp. 2635-2641 ◽  
Author(s):  
M. E. Kuipers ◽  
H. G. de Vries ◽  
M. C. Eikelboom ◽  
D. K. F. Meijer ◽  
P. J. Swart

ABSTRACT Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates ofCandida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates ofCandida. The MICs generally were determined to be in the range of 0.5 to 100 mg · ml−1. Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistantCandida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated.


1996 ◽  
Vol 40 (3) ◽  
pp. 822-824 ◽  
Author(s):  
S P Franzot ◽  
J S Hamdan

A total of 53 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates, were tested for their susceptibilities to amphotericin B, 5-flucytosine, ketoconazole, fluconazole, and itraconazole. The tests were performed according to the National Committee of Clinical Laboratory Standards recommendations (document M27-P). In general, there was a remarkable homogeneity of results for all strains, and comparable MICs were found for environmental and clinical isolates. This paper represents the first contribution in which susceptibility data for Brazilian C. neoformans isolates are provided.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
K R Reddy ◽  
S Ram Reddy

Investigations on antifungal drug susceptibility were carried out on 90 clinical isolates of Trichophyton rubrum, and Trichophyton mentagrophytes with four antifungal drugs, namely griseofulvin, fluconazole, itraconazole and terbinafine as suggested by National Committee for Clinical Laboratory Standards (NCCLS) M27–A (1997) document by broth macrodilution method to standardize in vitro antifungal susceptibility testing and to find out the Minimum Inhibitory Concentration (MIC) of the drugs. In this study, terbinafine was found to be the most efficient drug for all isolates. Terbinafine had the lowest MIC range of 0.001 g/ml to 0.09 g/ml and MIC50 was low at 0.005 g/ml and MIC90 was also low at 0.04 g/ml against T.rubrum; and MIC range of 0.001μg/ml to 0.19μg/ml with a MIC50 of 0.01μg/ml and MIC90 at 0.09μg/ml against T.mentagrophytes. Itraconazole showed antifungal activity superior to that of fluconazole, with a MIC range of 0.04g/ml to 1.56g/ml, with MIC50 at 0.19μg/ml and MIC90 at 1.56g/ml against T.rubrum; and MIC range of 0.04μg/ml to 1.56μg/ml, with MIC50 at 0.19μg/ml and MIC90 at 0.78μg/ml against T.mentagrophytes. Griseofulvin appears to be still a potent drug for management of dermatophytoses. Griseofulvin had a MIC range of 0.15g/ml to 5.07 g/ml with MIC50 at1.26 g/ml and MIC90 at 2.53 g/ml against T.rubrum; and MIC range of 0.31μg/ml to 5.07μg/ml with MIC50 at 1.26μg/ml and MIC90 at 2.53μg/ml against T.mentagrophytes. Fluconazole showed a high MIC range of 0.19 g/ml to 50 g/ml and MIC50 was high at 1.56g/ml and MIC90 was also high at 12.5 g/ml against T.rubrum; and a high MIC range of 0.09μg/ml to 25.0μg/ml, with MIC50 at 1.56μg/ml and MIC90 at 12.5μg/ml towards T.mentagrophytes. The technique was found to be easy to perform and reliable with consistent results.


Sign in / Sign up

Export Citation Format

Share Document