scholarly journals Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against ClinicalCandida Isolates

1999 ◽  
Vol 43 (11) ◽  
pp. 2635-2641 ◽  
Author(s):  
M. E. Kuipers ◽  
H. G. de Vries ◽  
M. C. Eikelboom ◽  
D. K. F. Meijer ◽  
P. J. Swart

ABSTRACT Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates ofCandida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates ofCandida. The MICs generally were determined to be in the range of 0.5 to 100 mg · ml−1. Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistantCandida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated.

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dae Hun Kim ◽  
Su-Young Kim ◽  
Hee Jae Huh ◽  
Nam Yong Lee ◽  
Won-Jung Koh ◽  
...  

ABSTRACT We evaluated the in vitro activity of rifamycin derivatives, including rifampin, rifapentine, rifaximin, and rifabutin, against clinical nontuberculous mycobacteria (NTM) isolates. Of the rifamycin derivatives, rifabutin showed the lowest MICs against all NTM species, including Mycobacterium avium complex, M. abscessus, and M. kansasii. Rifabutin also had effective in vitro activity against macrolide- and aminoglycoside-resistant NTM isolates. Rifabutin could be worth considering as a therapeutic option for NTM disease, particularly drug-resistant disease.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sarah M. McLeod ◽  
Samir H. Moussa ◽  
Meredith A. Hackel ◽  
Alita A. Miller

ABSTRACT Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-resistant (MDR) strains. The in vitro antibacterial activities of SUL-DUR and comparator agents were determined by broth microdilution against 1,722 clinical isolates of ABC organisms collected in 2016 and 2017 from 31 countries across Asia/South Pacific, Europe, Latin America, the Middle East, and North America. Over 50% of these isolates were resistant to carbapenems. Against this collection of global isolates, SUL-DUR had a MIC50/MIC90 of 1/2 μg/ml compared to a MIC50/MIC90 of 8/64 μg/ml for sulbactam alone. This level of activity was found to be consistent across organisms, regions, sources of infection, and subsets of resistance phenotypes, including MDR and extensively drug-resistant isolates. The SUL-DUR activity was superior to those of the tested comparators, with only colistin having similar potency. Whole-genome sequencing of the 39 isolates (2.3%) with a SUL-DUR MIC of >4 μg/ml revealed that these strains encoded either the metallo-β-lactamase NDM-1, which durlobactam does not inhibit, or single amino acid substitutions near the active site of penicillin binding protein 3 (PBP3), the primary target of sulbactam. In summary, SUL-DUR demonstrated potent antibacterial activity against recent, geographically diverse clinical isolates of ABC organisms, including MDR isolates.


2019 ◽  
Vol 75 (3) ◽  
pp. 600-608 ◽  
Author(s):  
Boppe Appalaraju ◽  
Sujata Baveja ◽  
Shrikala Baliga ◽  
Suchitra Shenoy ◽  
Renu Bhardwaj ◽  
...  

Abstract Background Levonadifloxacin is a novel antibiotic belonging to the benzoquinolizine subclass of fluoroquinolones with potent activity against MRSA and quinolone-resistant Staphylococcus aureus. IV levonadifloxacin and its oral prodrug alalevonadifloxacin have recently been approved in India for the treatment of acute bacterial skin and skin structure infections (ABSSSIs) including diabetic foot infections. Objectives To investigate the in vitro activity of levonadifloxacin against contemporary clinical isolates collected from multiple tertiary care hospitals across India in the Antimicrobial Susceptibility Profiling of Indian Resistotypes (ASPIRE) surveillance study. Methods A total of 1376 clinical isolates, consisting of staphylococci (n = 677), streptococci (n = 178), Enterobacterales (n = 320), Pseudomonas aeruginosa (n = 140) and Acinetobacter baumannii (n = 61), collected (2016–18) from 16 tertiary hospitals located across 12 states in India, were included in the study. The MICs of levonadifloxacin and comparator antibiotics were determined using the reference agar dilution method and broth microdilution method. Results Levonadifloxacin exhibited potent activity against MSSA (MIC50/90: 0.5/1 mg/L), MRSA (MIC50/90: 0.5/1 mg/L) and levofloxacin-resistant S. aureus (MIC50/90: 1/1 mg/L) isolates. Similarly, potent activity of levonadifloxacin was also observed against CoNS including MDR isolates (MIC50/90: 1/2 mg/L). Against Streptococcus pneumoniae, levonadifloxacin (MIC50/90: 0.5/0.5 mg/L) showed superior activity compared with levofloxacin (MIC50/90: 1/2 mg/L). Among levofloxacin-susceptible Enterobacterales, 80.6% of isolates were inhibited at ≤2 mg/L levonadifloxacin. Conclusions Levonadifloxacin displayed potent activity against contemporary MRSA and fluoroquinolone-resistant staphylococcal isolates, thus offering a valuable IV as well as an oral therapeutic option for the treatment of ABSSSIs. Furthermore, levonadifloxacin exhibited a broad-spectrum activity profile as evident from its activity against streptococci and levofloxacin-susceptible Gram-negative isolates.


2010 ◽  
Vol 54 (4) ◽  
pp. 1636-1638 ◽  
Author(s):  
Mohammad J. Najafzadeh ◽  
Hamid Badali ◽  
Maria Teresa Illnait-Zaragozi ◽  
G. Sybren De Hoog ◽  
Jacques F. Meis

ABSTRACT The in vitro activities of eight antifungal drugs against clinical isolates of Fonsecaea pedrosoi (n = 21), Fonsecaea monophora (n = 25), and Fonsecaea nubica (n = 9) were tested. The resulting MIC90s for all strains (n = 55) were as follows, in increasing order: posaconazole, 0.063 μg/ml; itraconazole, 0.125 μg/ml; isavuconazole, 0.25 μg/ml; voriconazole, 0.5 μg/ml; amphotericin B, 2 μg/ml; caspofungin, 2 μg/ml; anidulafungin, 2 μg/ml; and fluconazole, 32 μg/ml.


2006 ◽  
Vol 5 (10) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. Arunmozhi Balajee ◽  
David Nickle ◽  
Janos Varga ◽  
Kieren A. Marr

ABSTRACT Aspergillus fumigatus has been understood to be the most common cause of invasive aspergillosis (IA) in all epidemiological surveys. However, recent studies have uncovered a large degree of genetic heterogeneity between isolates morphologically identified as A. fumigatus, leading to the description of a new species, Aspergillus lentulus. Here, we examined the genetic diversity of clinical isolates identified as A. fumigatus using restriction enzyme polymorphism analysis and sequence-based identification. Analysis of 50 clinical isolates from geographically diverse locations recorded the presence of at least three distinct species: A. lentulus, Aspergillus udagawae, and A. fumigatus. In vitro, A. lentulus isolates demonstrated decreased susceptibility to antifungal drugs currently used for IA, including amphotericin B, voriconazole, and caspofungin; A. udagawae isolates demonstrated decreased in vitro susceptibility to amphotericin B. Results of the present study demonstrate that current phenotypic methods to identify fungi do not differentiate between genetically distinct species in the A. fumigatus group. Differential antifungal susceptibilities of these species may account for some of the reported poor outcomes of therapy in clinical studies.


2020 ◽  
Vol 30 (3) ◽  
pp. 100968
Author(s):  
S. Khodavaisy ◽  
H. Badali ◽  
J.F. Meis ◽  
M. Modiri ◽  
S. Mahmoudi ◽  
...  

1996 ◽  
Vol 40 (3) ◽  
pp. 822-824 ◽  
Author(s):  
S P Franzot ◽  
J S Hamdan

A total of 53 Cryptococcus neoformans strains, including clinical and environmental Brazilian isolates, were tested for their susceptibilities to amphotericin B, 5-flucytosine, ketoconazole, fluconazole, and itraconazole. The tests were performed according to the National Committee of Clinical Laboratory Standards recommendations (document M27-P). In general, there was a remarkable homogeneity of results for all strains, and comparable MICs were found for environmental and clinical isolates. This paper represents the first contribution in which susceptibility data for Brazilian C. neoformans isolates are provided.


2010 ◽  
Vol 54 (6) ◽  
pp. 2670-2673 ◽  
Author(s):  
Kai Lin ◽  
Sylwia Karwowska ◽  
Eric Lam ◽  
Kay Limoli ◽  
Thomas G. Evans ◽  
...  

ABSTRACT Most approved drugs with activity against hepatitis B virus (HBV) have activity against human immunodeficiency virus type 1 (HIV-1), which precludes their use in patients who are coinfected with HBV and HIV-1 and who are not receiving antiretroviral therapy due to the risk of inducing resistance. The activity of telbivudine, a highly selective HBV inhibitor, against temporally and geographically distinct wild-type and multidrug-resistant HIV-1 clinical isolates was evaluated in vitro. No inhibition was observed with up to 600 μM drug, which supports further exploration of telbivudine as a therapeutic option for the treatment of HBV infections in patients coinfected with HIV-1.


Sign in / Sign up

Export Citation Format

Share Document