On the low regularity solutions and wave breaking for an equation modeling shallow water waves of moderate amplitude

2014 ◽  
Vol 107 ◽  
pp. 1-11 ◽  
Author(s):  
Xingxing Liu ◽  
Jingjing Liu
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zhixi Shen ◽  
Yujuan Wang ◽  
Hamid Reza Karimi ◽  
Yongduan Song

This paper investigates the multipeakon dissipative behavior of the modified coupled two-component Camassa-Holm system arisen from shallow water waves moving. To tackle this problem, we convert the original partial differential equations into a set of new differential equations by using skillfully defined characteristic and variables. Such treatment allows for the construction of the multipeakon solutions for the system. The peakon-antipeakon collisions as well as the dissipative behavior (energy loss) after wave breaking are closely examined. The results obtained herein are deemed valuable for understanding the inherent dynamic behavior of shallow water wave breaking.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Kenan Šehić ◽  
Henrik Bredmose ◽  
John D. Sørensen ◽  
Mirza Karamehmedović

2000 ◽  
Vol 24 (10) ◽  
pp. 649-661 ◽  
Author(s):  
Mohamed Atef Helal

This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating rectangular basin. The equations of motion of such a problem with its boundary conditions are reduced to a system of nonlinear equations, which is to be solved by applying the shallow water approximation theory. Each unknown of the problem is expanded asymptotically in terms of the small parameterϵwhich generally depends on some intrinsic quantities of the problem of study. For each order of approximation, the nonlinear system of equations is presented successively. It is worthy to note that such a study has useful applications in the oceanography.


Sign in / Sign up

Export Citation Format

Share Document